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Abstract

Committee-selection problems arise in many contexts and
applications; there has been increasing interest in the social
choice research community on identifying which properties
are satisfied by different multi-winner voting rules. In this
work, we propose a data-driven framework to evaluate how
frequently voting rules violate axioms across diverse prefer-
ence distributions in practice, shifting away from the binary
perspective of axiom satisfaction given by worst-case anal-
ysis. We use this framework to analyze the relationship be-
tween multi-winner voting rules and their axiomatic perfor-
mance under several preference distributions, and propose a
method for systematically minimizing axioms violations. Our
results suggest that data-driven approaches to social choice
can inform the design of new voting systems and support the
continuation of data-driven research in social choice.

1 Introduction
Committee selection is a central problem in social choice
theory, wherein voters elect a subset of alternatives based on
their preferences (Lackner and Skowron 2023; Faliszewski
et al. 2017). There are numerous properties or axioms we
might wish a multi-winner voting rule to satisfy; however,
many combinations of axioms are known to be impossible
to satisfy simultaneously. Traditional research often focuses
on ascertaining which combinations are possible or are sat-
isfied by a voting rule. Such work is motivated by a desire to
identify rules which universally satisfy axioms desirable to a
particular setting. However, in many instances, a voting rule
may not satisfy an axiom, yet rarely violates it in practice.

We propose a data-driven framework to evaluate and ex-
plore voting rules axiomatically. To do so, we define a mea-
sure of axiom violation more fine-grained than binary satis-
faction, moving away from worst-case analysis and towards
an average-case evaluation model. We apply this framework
to explore the relationship between voter preference distri-
butions and axiomatic properties within the context of com-
mon multi-winner voting rules, allowing us to quantify the
practical trade-offs that classical theory hides. We consider
how to systematically reduce axiom violations across voter
preference distributions using machine learning, showing
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that this approach yields voting rules that fare much better
than most traditional voting rules.

Specifically, we make the following contributions:

1. We develop a novel data-driven measure of axiomatic vi-
olations, which demonstrate the high sensitivity of many
multi-winner voting rules to changes in underlying voter
preferences.

2. We identify novel similarities and unexpected differences
between existing multi-winner rules in terms of the com-
mittees they select and how often they violate axioms.

3. We demonstrate that machine learning can very effec-
tively discover novel multi-winner voting rules with
compelling axiomatic performance.

In summary, this paper combines a data-driven approach
with machine learning to deepen our understanding of so-
cial choice and inform the design of new voting systems.
This work is supported by the Supplementary Material in
our extended paper (Caiata, Armstrong, and Larson 2025).

1.1 Related Work
Much prior work has developed novel axioms to describe de-
sirable properties, or shown which voting rules satisfy which
axioms. Of relevance to our work, Elkind et al. describes ax-
ioms and satisfaction results for several multi-winner voting
rules (Elkind et al. 2017). They note, in particular, the dif-
ficulty of satisfying Dummett’s condition (where if a large
enough group of voters agree on a set of alternatives as their
top choices, those alternatives should be in the winning com-
mittee) (Dummett 1984). A similar analysis is taken for
rules and axioms based on approval preferences by Lackner
and Skowron (2023); Peters and Skowron (2020).

Our approach builds on data-driven axiomatic analy-
sis (d’Eon and Larson 2020; Fairstein, Vilenchik, and Gal
2024), using axioms from the social choice literature. Our
results vary greatly based on underlying voter preferences;
these are well-studied for the single-winner setting (Elkind
2018) but less is known for the multi-winner setting. We
use well-studied distributions shown to approximate hu-
man preferences or explore restricted cases (Boehmer et al.
2021). Recent work has highlighted differences in the win-
ners of multi-winner voting rules on generated and real-
world preference data, emphasizing how some rules elect



committees which are quite different from each other, partic-
ularly Minimax Approval Voting, Chamberlin-Courant, and
sequential Chamberlin-Courant (Faliszewski et al. 2023).

Other recent work has explored the application of ma-
chine learning to social choice. Prior work focuses primarily
on approximating single-winner rules (Matone et al. 2025;
Burka et al. 2022; Kujawska, Slavkovik, and Rückmann
2020). Existing work on learning new rules, primarily in
single-winner settings, has studied learning rules under spe-
cific axioms (Armstrong and Larson 2019; Hornischer and
Terzopoulou 2025), reducing susceptibility to manipula-
tion (Holliday, Kristoffersen, and Pacuit 2025), or maximiz-
ing utility without axiomatic focus (Anil and Bao 2021).
One paper explored learning multi-winner rules for partic-
ipatory budgeting with a focus on measures of social wel-
fare (Fairstein, Vilenchik, and Gal 2024). Our work, instead,
studies how often voting rules violate axioms in practice and
how one might systematically reduce such violations.

2 Social Choice Cornerstones
Traditional research in social choice is based upon three cor-
nerstones: voting rules, voter preferences, and measures of
outcome quality. Voting rules aggregate voter preferences
following a procedure aimed at maximizing quality. Rules
may provide a single winner, a ranking over alternatives, or
a set of multiple winners. Voter preferences are the subject of
aggregation; often modelled as originating from some fixed
distribution or based upon empirical data. Measures of vot-
ing rule quality primarily fall into one of two paradigms: so-
cial welfare, or axiomatic. This paper considers rules which
elect multiple winners, sampling ordinal or approval pref-
erences from a variety of distributions, and measure quality
using a novel measure of axiom violations. We now provide
the basic notation used through the paper, and defer full def-
initions to (Caiata, Armstrong, and Larson 2025).

Model and Notation Let V be a set of n voters and M be
a set of m alternatives. Each voter vi ∈ V has a preference
ranking over M where for ai, aj ∈ M , ai ≻v aj means that
voter v ∈ V prefers alternative ai to aj . A preference profile,
P≻ = (≻v1

, . . . ,≻vn) is a vector specifying the preferences
of each voter. In addition to each voter’s ranked preferences,
we also consider the alternatives of which they most ap-
prove. Let App(v) ⊂ M be the approval set of voter v ∈ V ,
containing the k most preferred alternatives of v, with no
information about v’s relative preferences over these alter-
natives. We let PApp = (App(v1), . . . , App(vn)), and when
it is clear from the context we refer to either ordinal prefer-
ence profiles or approval sets as preference profiles and let
P refer to either P≻ or PApp. An election, E = (V,M), is
defined by its voters and alternatives, along with, implicitly,
either preference profiles or approval sets of the voters.

We are interested in multi-winner voting rules. Given an
election E and associated P and k, 1 ≤ k < m, Fk(E) ⊆
{C | C ⊂ M , |C| = k} is a multi-winner voting rule that
returns a family of k-sized subsets of M , called the winning
committees. If Fk uses P≻ we call the voting rule ordinal.
If Fk uses PApp we say the voting rule is approval-based.
We focus on resolute multi-winner voting rules (those with

a single winning committee) and assume each rule uses lex-
icographic tie-breaking to return a single committee.

2.1 Multi-Winner Voting Rules
We consider multi-winner voting rules from the existing
literature which are broadly classified into two categories:
ordinal-based and approval-based. While much research fo-
cuses exclusively on either ordinal- or approval-based rules
we intentionally include rules from both categories in our
study. This allows us to highlight behavioural differences
among rules which are seldom compared directly.

Ordinal Voting Rules
• k-Borda
• Single Non-Transferable Vote (SNTV)
• Single Transferable Vote (STV)

Approval-Based Voting Rules
• Bloc
• Proportional Approval Voting (PAV)
• Chamberlin-Courant (CC), sequential Chamberlin-

Courant (seq-CC), lexicographic Chamberlin-Courant
(lex-CC)

• Monroe, Greedy Monroe
• Minimax Approval (MAV)
• Method of Equal Shares (MES)
• E Pluribus Hugo (EPH)
• Random Serial Dictator (RSD)

Faliszewski et al. (2017) describe three categories for
multi-winner voting rules: individual excellence (electing
alternatives which are individually well-liked), diversity
(electing alternatives which are different from each other),
and proportionality (electing a committee which proportion-
ally represents the preferences of voters). The rules we use
are generally aligned with one or two of these categories:

Individual Excellence: FBorda, FSNTV, FBloc, FEPH

Diversity: FSNTV, FCC

Proportionality: FSTV, FPAV, FMonroe, FCC, FMES, FEPH

These are subjective categorizations and are not mutually
exclusive. For example, FCC has been described as both
diverse (Faliszewski et al. 2023) and proportional (Elkind
et al. 2017). FMAV and FRSD do not neatly fit into any cat-
egory (FMAV considers alternatives as sets rather than in-
dividuals but does not obviously aim to achieve diversity or
proportionality while FRSD considers only a single voter’s
opinion). We also incorporate three quasi-rules FMin and
FMax which always elect the committee which violate (re-
spectively) the least and the most axioms possible, as well
as FRandom which elects a committee uniformly at random.

2.2 Voting Rule Axioms
Much of the literature on voting rules is axiomatic, describ-
ing desirable properties that voting rules may or may not ex-
hibit. We focus exclusively on intraprofile axioms – axioms
for which we can determine a violation using only the pref-
erence profile being given to F and the resulting committee



(Schmidtlein 2022). Axioms can also be loosely categorized
based on the stated priorities of their definitions.

Axioms of Individual Excellence
• Majority Winner/Loser (Fishburn 1977)
• Condorcet Winner/Loser (Gehrlein 1985)
• Strong Pareto Efficiency (Lackner and Skowron 2023)
• Fixed Majority (Debord 1993; Elkind et al. 2017)
• Strong Unanimity (Elkind et al. 2017)

Axioms of Diversity and Proportionality
• Local Stability (Aziz et al. 2017)
• Dummett’s Condition (Dummett 1984)
• Solid Coalitions (Elkind et al. 2017)
• Core (Lackner and Skowron 2023)
• Justified Representation, Extended Justified Representa-

tion (Lackner and Skowron 2023)
Table 1 illustrates which existing voting rules are known

to satisfy each axiom. Green entries indicate known ax-
iomatic satisfaction for a particular axiom and voting rule.

Many of these axioms are related to one another; we pro-
vide a study of the relationship between these axioms in (Ca-
iata, Armstrong, and Larson 2025). While many of these are
known we also contribute several novel findings. We have
chosen one set of axioms to study; many other sets of ax-
ioms are also of interest. Thus, our results aim to inform both
about these specific axioms but also, more broadly, provide
a framework for this approach to empirical analysis.

2.3 Preference Distributions
Our experiments consider a wide range of standard prefer-
ence distributions (D): 8 families of distribution, as well as
two additional sets of preferences. These are used both for
training novel rules, as well as testing novel and existing
rules. We generate ordinal ballots and, when needed by a
rule, convert them to approvals where each voter approves
of their k top-ranked alternatives. There are many other
valid methods of generating approvals which we do not ex-
plore. We categorize distributions by the amount of structure
within the profiles they generate, from Identity preferences
where all voters are identical to Impartial Culture where vot-
ers are assigned preferences uniformly at random.

Unstructured Distributions
• Impartial Culture (Guilbaud 1952).
• Impartial Anonymous Culture (Kuga and Nagatani

1974; Gehrlein and Fishburn 1976).

Moderately Structured Distributions
• Mallows (Mallows 1957; Boehmer et al. 2021)
• Urn (Eggenberger and Pólya 1923).
• Euclidean (Enelow and Hinich 1984).

Highly Structured Distributions
• Identity: All voters in V have identical preferences.
• Single-Peaked (Conitzer 2007; Walsh 2015).
• Stratification (Boehmer et al. 2021).

Additional Preference Distributions
• Mixed: Profiles sampled equally from each artificial dis-

tribution listed above.
• PrefLib: Empirical voter preferences hosted on PrefLib

(Mattei and Walsh 2013).

3 Data-Driven Analysis
Traditionally, axiomatic analysis of voting rules asks if a rule
universally satisfies some axiom. In empirical settings, how-
ever, the gap between worst-case analysis and average-case
behaviour can be large. The key insight, and motivation,
for a shift in voting rule analysis is that a fine-grained and
empirical lens reveals real, meaningful differences in rule
behaviour across distributions that are invisible when only
looking at axiomatic satisfaction as a binary question.

We introduce two measures that we use to understand the
behaviour of voting rules. Our data-driven analysis is well-
suited to exploring deep non-binary measures of axiom sat-
isfaction. We capture this by measuring the rate at which the
outcome of voting rules violates an axiom. We also study
the amount of overlap between committees elected by vot-
ing rules to capture similarity in rule behaviour, separated
from differences in the algorithm rules may follow.

3.1 Axiom Violation Rate
Axiom violation rate (AVR) is our core metric for empiri-
cal axiomatic performance. As we focus exclusively on in-
traprofile axioms, we can determine whether an axiom is vi-
olated by a preference profile using only the voting rule F
and the profile itself. If axiom A is violated by a specific
preference profile P and committee c, we say A(P, c) = 1.
If A is not violated, A(P, c) = 0. Then, we define the axiom
violation rate of F on a set of profiles P over axioms A as:

AVR(F ,P,A) =
1

|A||P|
∑
A∈A

∑
P∈P

A(P,F(P ))

3.2 Rule Differences
We also measure overlap between elected committees. This
tells us (1) whether rules with similar AVR elect similar
underlying committees, and (2) the degree of similarity be-
tween committees elected by rules with differing AVRs. We
say ∩+

P (F1,F2) = F1(P ) ∩ F2(P ) and ∩−
P (F1,F2) =

(M \F1(P ))∩ (M \F2(P )). We also define normalization
factor δ = m

m−|m−2k| which ensures the difference between
two rules on a given set of profiles P ranges from 0 to 1.

d(F1,F2,P) = δ− δ

m|P|
∑
P∈P

|∩+
P (F

1,F2)|+|∩−
P (F

1,F2)|

3.3 Learning Voting Rules
We learn two versions of FNN, a novel voting rule built atop
a multi-layer perceptron that is optimized to minimize axiom
violation rate. Here we outline the procedure we use to train
the model. Specific details on the parameters used to train
FNN in our experiments are included in Section 4. Our data
generation and learning use the following procedure:



1. Generate Axiom Violation Data
i Generate separate training and testing sets by sampling

profiles from some distribution D. Randomly rename
alternatives to ensure profiles satisfy neutrality.

ii Find, by exhaustive search, the committee c =
argminc

∑
A∈A A(P, c) which minimizes axiom vio-

lations in A. Use lexicographic tie-breaking.

2. Transform Profiles Into Training Data To allow our
learning process to scale to arbitrary numbers of voters,
transform each profile generated in the previous step into
three matrices, which are flattened, concatenated, and
normalized to form input features.
Majority Matrix An m×m matrix Rm with Rm

ij = 1 if
a weak majority of voters prefer ai to aj and 0 otherwise.
Weighted Preference Matrix An m×m matrix Rw with
Rw

ij = c to indicate that c voters prefer ai over aj .
Ranking Matrix An m × m matrix Rr where Rr

ij = c
indicates that c voters place ai in rank j.

3. Learn Novel Rules Each profile corresponds to a single
set of concatenated matrices and a committee that mini-
mizes violations of axioms we are interested in. We use
the L1 Loss function to train FNN on this data.

4 Experimental Results and Analysis
We now describe our experiments, our results, and discuss
their implications. From both existing and learned rules we
are able to extract novel conclusions about each of our cor-
nerstones and the learnability of novel rules.

4.1 Experimental Parameters
We run experiments to test all rules on all combinations of
m = {5, 6, 7} alternatives and k = {1, 2, ...,m − 1} win-
ners. In all cases we use profiles with n = 50 voters1. All
rules are evaluated on 25,000 profiles. All experiments ran
on the Digital Research Alliance of Canada’s Graham clus-
ter. We restrict our experiments to a maximum of 7 alter-
natives as some of the axioms we consider (e.g., the Core)
require significant time to evaluate. Our focus is primarily on
describing our novel methodology for analyzing voting rules
empirically; the issue of scalability is left as future work. We
introduce two configurations of our learned rule FNN:

Learning Configuration 1: All Axioms Our initial
learned rule FNN-all is trained on data generated from evalu-
ating violations for all axioms we have described. We train
FNN-all on all test distributions described below.

Learning Configuration 2: Root Axioms We train
FNN-root on a second set of axioms; those which, if satisfied,
imply satisfaction of the other axioms. These are: Majority
Loser, Condorcet Winner, Dummett’s Condition, Local Sta-
bility, Strong Pareto, and the Core. See (Caiata, Armstrong,
and Larson 2025) for details of these relationships. We train
FNN-root on all distributions below, except as noted.

1Early experiments sampled n from a normal distribution trun-
cated between 25 and 75. We found n has no impact on perfor-
mance and use profiles with 50 voters for simplicity.

Learning Parameters For each configuration we train 20
neural networks using PyTorch (Paszke et al. 2019) with 5
hidden layers of 256 nodes. Networks are trained for up to
50 epochs using the Adam optimizer with a learning rate of
1e-4, stopping if there is no improvement of at least 0.0005
over 10 epochs. We generate separate train and test sets of
25,000 examples each for all 255 unique combinations of m,
k, and D. Each profile contains 50 voters. We do not filter
profiles to ensure no overlap between training and test sets
but find that there is minimal overlap between these sets in
almost all cases (except with the Identity distribution).

Preference Distributions We parameterize each of our
preference distributions as follows.

• IC, IAC, Identity take no parameter
• Mallow’s with θ sampled uniformly at random as de-

scribed by Boehmer, Faliszewski, and Kraiczy (2023).
• Urn with α sampled from a Gamma distribution

(Boehmer et al. 2021).
• Single-peaked distributions as described by (Conitzer

2007) and (Walsh 2015).
• Stratification with w = 0.5.
• 8 Euclidean distributions with each combination of: 3 or

10 dimensions, a Ball or Cube topology, and Uniform or
Gaussian placement of voters. Due to the similarity of
results across Euclidean distributions for FNN-all we train
FNN-root only on the 3-dimensional Gaussian Ball.

• 1 distribution containing an even mixture of the 16 other
distributions. We test mixed distributions on FNN-all and
pre-existing rules, but not FNN-root.

4.2 Understanding Our Cornerstones
We first report our findings by considering each pair of our
cornerstones: axioms, voting rules, and preferences. By ex-
amining multiple aspects of our area of focus we can form
novel connections.

Axioms and Voting Rules In Table 1 we show the AVR of
each rule on each individual axiom. Upon dividing rules and
axioms into their informal categories of excellence-based or
diverse/proportional some consistent patterns emerge.

Most notably, excellence-based rules generally have low
axiom violation rates, even on axioms relating to diver-
sity/proportionality. Axioms that are formally satisfied by
some proportional rules (i.e., JR, EJR) are almost never vio-
lated by most excellence-based rules. Other proportionality-
based axioms, such as Solid Coalitions, are violated more
frequently by all diverse/proportional rules except FSTV.
The following may explain this finding: Alternatives which
are liked individually are likely to be members of commit-
tees which provide strong proportional properties. Identify-
ing the alternatives which are liked individually may be eas-
ier to do well at than identifying strong sets of alternatives.

Axioms and Preference Distributions In considering the
relationship between axioms and preferences we also iden-
tify trends. Figure 1 show that distributions with moderate or
high structure have highly variable AVR (see also, (Caiata,



Figure 1: AVR on all axioms for m = 7 on distributions with low, moderate, and high structure, and mix of all distributions.

Armstrong, and Larson 2025)). Surprisingly, we observe dif-
ferences even between Single-Peaked distributions. We also
observe a spike in maximum AVR when selecting a commit-
tee that contains less than half of alternatives. This may be an
artifact of specific axioms: e.g., on Identity preferences it is
impossible to violate Justified Representation when choos-
ing a committee with a majority of alternatives.

Voting Rules and Preference Distributions We now fo-
cus primarily on voting rules and preferences. Figure 1
shows the axiom violation rate averaged over all axioms
for each different voting rule on selected distributions. As
we would expect, highly structured preference distributions
(Identity, Single-Peaked, Stratified) have correspondingly
higher axiom violation rates by most rules. This is unsur-
prising as additional structure provides more opportunity to
violate axioms, as shown by FMax which is much higher
for these distributions. Similarly, in distributions with low
structure (IC, IAC) the maximum violation rate is quite low.
Again, we find this intuitive: if all alternatives have equal
support then any committee becomes an equally reasonable
choice and reasonable axioms should not be violated.

Plots shared in our supplementary material enable fine-
grained observations. e.g., FCC, F seq-CC, and FSNTV have
unexpectedly high AVR on Identity preferences (Caiata,
Armstrong, and Larson 2025). In fact, this is an artifact of
lexicographic tie-breaking. Randomized tie-breaking could
affect these results and is interesting future work.

Voting Rule Differences Table 2 shows the mean differ-
ence between each rule based on the overlap between their
elected committees. As expected, randomly chosen commit-
tees and FMax are almost always the most different than
committees returned by all other rules. Surprisingly, there
are exceptions: FMAV and F seq-CC elect committees with less
overlap than with a randomly chosen committee. This indi-
cates that these rules optimize for different, and mutually ex-
clusive, goals. Other pairs of rules more different from each
other than from random committees can be found when con-
sidering only a single preference distribution (included in
our supplemental files). Note that all the differences from
random committees listed in Table 2 appear identical. While
these values are close to each other, the identicalness is an
artifact of rounding.

On the other hand, we also find rules that are similar de-

spite, on their surface, following different algorithms: FBloc,
FPAV and FEPH all follow some procedure that awards an
equal number of points to a set of alternatives. Each of these
rules have very low distance from the others, indicating that
moderate differences in their algorithmic behaviour have rel-
atively little effect on the committees they elect. FNN-all is
most similar to FMin. This is expected given that FNN-all

is trained to find exactly the committees that minimize the
number of axiom violations. It is also interesting that FBorda

is relatively close to FMin. This, too, is expected given that
FBorda has among the lowest AVR. Overall, there is a trend
of rules with low AVR electing committees similar to one
another, while rules with high AVR have more variation.

4.3 Learning From Learned Rules
Table 1 shows that both axiom configurations result in
rules with generally low AVR. Averaged across all axioms,
FNN-all has a lower AVR than any existing rule we evaluated
while FNN-root has a lower AVR than all rules but FBorda.
While these results are still higher than the lowest possible
violation rate (FMin), they show that networks are capable of
identifying committees with desired axiomatic properties.

By learning different sets of axioms we both deepen our
understanding of which axioms are more difficult to learn,
and gauge the benefit of learning “redundant” axioms with
FNN-all. As FNN-all has a lower violation rate, it is clearly
beneficial to learn from all axioms. This is intuitive, FNN-all

has the opportunity to learn to satisfy non-root axioms even
in cases when root axioms may not be possible to mutu-
ally satisfy. However, even when evaluating only the root
axioms, FNN-all has a mean AVR of 0.0283 compared to an
average violation rate of 0.0692 for FNN-root. Training on the
additional axioms provides additional signal to the learning
process which reduces violations of root axioms.

4.4 Real-World Data
Using networks trained on the Mixed distribution, we ap-
plied each FNN-all to a selection of real-world data collected
from PrefLib (Mattei and Walsh 2013). We find that this
highlights the sensitivity of learned models to their train-
ing data: our Mixed distribution is not a perfect match of
the distribution underlying the empirical data we tested on.
Nonetheless, we find that FNN-all generalizes well, having,
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NN-all .017 .000 .000 .015 .000 .004 .000 .000 .061 .001 .001 .001 .046 .092
NN-root .038 .001 .030 .200 .010 .045 .024 .000 .056 .000 .000 .002 .044 .082
Min .009 0 .001 .036 0 .001 .001 0 .012 0 .000 .000 .005 .059
Max .440 .125 .340 .919 .635 .620 .175 .076 .555 .234 .354 .381 .521 .787

Borda .021 .001 .004 .125 0 .004 .011 0 .044 .000 .000 .000 .031 .056
EPH .040 .000 .001 .270 .002 .000 .001 0 .082 .000 .000 .000 .063 .096
SNTV .099 0 .098 .619 .007 .227 .106 .049 .062 .001 .054 .058 0 .012
Bloc .039 .000 .001 .254 .002 0 0 0 .080 .000 .000 .000 .061 .106

STV .048 0 .037 .442 .002 .118 .029 0 0 .000 .000 .001 0 .001
PAV .043 .001 .001 .308 .002 0 .004 0 .088 0 0 0 .068 .091
MES .049 .001 .002 .351 .002 .001 .008 0 .096 0 0 0 .075 .095
CC .195 .036 .146 .756 .031 .344 .141 .062 .308 0 .084 .091 .232 .301
seq-CC .183 .032 .139 .740 .025 .297 .140 .061 .292 0 .078 .081 .216 .278
lex-CC .061 .005 .007 .440 .002 0 .024 0 .117 0 .000 .000 .091 .112
Monroe .130 .007 .078 .649 .026 .234 .060 0 .214 0 .002 .006 .180 .231
Greedy M. .063 .002 .019 .448 .003 .012 .023 0 .112 0 0 0 .089 .118

MAV .157 .022 .110 .750 .044 .279 .084 0 .219 .015 .022 .022 .179 .300
RSD .105 .008 .056 .594 .016 0 .036 0 .148 .030 .032 .033 .120 .299
Random .237 .063 .171 .845 .057 .406 .160 .071 .326 .049 .125 .134 .252 .419

Table 1: Axiom violation rates for 7 alternatives averaged over all distributions and numbers of winners. Voting rules and
axioms are separated to indicate to which category of rule/axiom they belong. Root axioms are underlined. Bold values indicate
the best result of a column, italic values have been rounded to zero. Shaded green indicates that previous work has shown the
rule satisfies this axiom (Elkind et al. 2017; Lackner and Skowron 2023). Due to differences in tie-breaking with previous work,
some edge cases do not match prior theoretical results.

for example, a mean AVR of 0.102 compared to an AVR of
0.303 for committees selected at random.

4.5 Optimized Positional Scoring Rules
The low AVR of FBorda inspires a natural question: Is there a
positional scoring rule with even stronger performance than
FBorda? A positive answer would provide a rule which is
both highly optimized and interpretable in a way that neu-
ral networks are not. To address this question we use the
optimal-voting package (Armstrong 2025) to gener-
ate improved positional score vectors. After only a small
number of annealing steps we reliably generate score vec-
tors that improve upon FBorda by a small amount. Though
mild, these results suggest further optimization in this regard
may yield interesting results. Full results of this experiment
are included in (Caiata, Armstrong, and Larson 2025).

5 Discussion
We have shown that (1) different multi-winner voting rules
elect committees that are distinct from one another and vi-
olate axioms at different rates, (2) these differences de-
pend greatly upon underlying voter preferences, and (3) it
is possible to learn novel rules with significantly lower ax-

iom violation rates. These contributions complement other
recent work demonstrating the efficacy of combining ma-
chine learning with social choice (Golowich, Narasimhan,
and Parkes 2018; Conitzer et al. 2024; Lanctot et al. 2025)
and adds to the literature extending axiomatic analysis be-
yond the worst case (Flanigan, Halpern, and Psomas 2023).
We highlight findings of particular note to the broader re-
search community as well as opportunities for future work.
Competing Definitions of Proportionality We observe
two contrasting types of proportionality among our axioms.
Core, EJR, and JR are formally linked (each a weaker ver-
sion of the former) (Lackner and Skowron 2023) while Lo-
cal Stability, Dummett’s, and Solid Coalitions have distinct
origins. Most rules violate the first three axioms similarly,
while there is much more variability in AVR on axioms from
the second group. Clear distinctions between these two types
of proportionality are missing in the literature. For example,
FCC and FMonroe “explicitly aim at proportional representa-
tion” (Elkind et al. 2017) yet these rules violate Dummett’s
Condition, Solid Coalitions, and Local Stability frequently
while maintaining a low AVR on JR, EJR, and the Core.
Proportionality and Electing Losers The high AVR of pro-
portional rules FCC and FMonroe for the Condorcet/Majority
Loser axioms demonstrates a fundamental tension between
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EPH .248 .000 – – – – – – – – – – – –
SNTV .463 .420 .000 – – – – – – – – – – –
Bloc .248 .021 .417 .000 – – – – – – – – – –
STV .315 .360 .299 .359 .000 – – – – – – – – –
PAV .255 .051 .429 .065 .365 .000 – – – – – – – –
MES .271 .118 .412 .130 .373 .086 .000 – – – – – – –
CC .600 .483 .588 .487 .572 .464 .496 .000 – – – – – –
seq-CC .568 .484 .464 .492 .566 .467 .431 .672 .000 – – – – –
lex-CC .310 .133 .451 .144 .396 .089 .117 .440 .461 .000 – – – –
Monroe .514 .396 .531 .400 .491 .376 .408 .117 .618 .366 .000 – – –
Greedy M. .334 .223 .428 .232 .404 .203 .170 .512 .402 .218 .431 .000 – –
MAV .611 .599 .694 .598 .617 .597 .612 .342 .813 .587 .344 .635 .000 –
RSD .486 .465 .586 .464 .526 .467 .470 .646 .629 .481 .577 .484 .626 .000
Random .714 .714 .714 .714 .714 .714 .714 .714 .714 .714 .714 .714 .714 .714
Min .158 .261 .476 .254 .325 .278 .300 .566 .598 .331 .481 .361 .561 .490
Max .940 .936 .865 .941 .912 .930 .922 .813 .748 .913 .866 .904 .833 .856
NN-all .147 .240 .484 .232 .335 .258 .283 .569 .593 .315 .484 .349 .562 .484
NN-root .375 .395 .539 .392 .424 .403 .414 .530 .661 .432 .411 .443 .426 .496

Table 2: Difference between rules for 7 alternatives with 1 ≤ k < 7 averaged over all preference distributions. Darker values
correspond to larger differences. A difference of 0 between two rules indicates the rules always elect the same committee while
a difference of 1 indicates that the rules’ winning committees have maximal overlap.

proportionality and avoiding bad alternatives. To be propor-
tional, it may be necessary to elect an alternative ranked low
by a majority of voters. New axioms may bridge this gap by
formally considering a balance between proportionality and
electing highly polarizing alternatives.
Individual Excellence and Proportional Rules Rules fo-
cused on electing alternatives which are individually popu-
lar among voters result in fewer violations of proportional-
ity axioms than rules with a stated goal of proportionality. If
proportionality guarantees can be established for excellence-
based rules this would allow us to benefit from their superior
performance in settings where proportionality is important.
Learning Simple Axioms Targeting both simple and com-
plex axioms results in FNN-all having lower AVR than
FNN-root. This suggests that future axiom learning tasks
could be enhanced by introducing simple dummy axioms
that inform about more complex axioms (e.g., a Fixed Ma-
jority committee is a Condorcet Winner, so the FM axiom
may be seen as informative about Condorcet Winner).
Difference Between Rules Our results can be compared
with maps of multi-winner elections (Faliszewski et al.
2023). In particular, in both their work and ours: (1) rules
focused on individual excellence elect different committees
than proportional rules, and (2) FMAV is quite unique.

5.1 Future Directions
There are several interesting directions for this work. First,
our research can be directly applied to evaluate arbitrary
sets of intraprofile axioms, and extended to the more gen-

eral class of interprofile axioms (Schmidtlein 2022). This
would allow measuring violations of additional axioms such
as consistency or clone-proofness (Brandt et al. 2016).

Second, we proposed a new metric for evaluating voting
rules, the axiom violation rate. Impossibility theorems show
that some axioms can never be mutually satisfied; in these
cases, an interesting challenge for future research is to de-
velop new rules optimized for a low axiom violation rate.
Black-box machine learning techniques may suffice for this;
however, identifying classes of rule (such as positional scor-
ing rules) which are optimizable and provide reliable, inter-
pretable outcomes will provide additional usability.

Finally, we are interested in extending our metric of axiom
violations to allow robust, theoretical conclusions about ax-
iomatic properties – similar to those given by PAC-learning
(Valiant 1984). Such an approach would complement both
the axiomatic and the empirical study of voting rules.
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ketteter Vorgänge. ZAMM-Journal of Applied Mathematics
and Mechanics/Zeitschrift für Angewandte Mathematik und
Mechanik, 3(4): 279–289.
Elkind, E. 2018. Restricted Preference Domains in Social
Choice: Two Perspectives. In Algorithmic Game Theory:
11th International Symposium, SAGT 2018, Beijing, China,
September 11-14, 2018, Proceedings 11, 12–18. Springer.
Elkind, E.; Faliszewski, P.; Skowron, P.; and Slinko, A.
2017. Properties of Multiwinner Voting Rules. Social
Choice and Welfare, 48: 599–632.

Enelow, J. M.; and Hinich, M. J. 1984. The Spatial Theory
of Voting: An Introduction. CUP Archive.
Fairstein, R.; Vilenchik, D.; and Gal, K. 2024. Learning Ag-
gregation Rules in Participatory Budgeting: A Data-Driven
Approach. arXiv preprint arXiv:2412.01864.
Faliszewski, P.; Lackner, M.; Sornat, K.; and Szufa, S. 2023.
An Experimental Comparison of Multiwinner Voting Rules
on Approval Elections. In Proceedings of the Thirty-Second
International Joint Conference on Artificial Intelligence,
2675–2683.
Faliszewski, P.; Skowron, P.; Slinko, A.; and Talmon, N.
2017. Multiwinner Voting: A New Challenge for Social
Choice Theory. Trends in Computational Social Choice,
74(2017): 27–47.
Fishburn, P. C. 1977. Condorcet Social Choice Functions.
SIAM Journal on Applied Mathematics, 33(3): 469–489.
Flanigan, B.; Halpern, D.; and Psomas, A. 2023. Smoothed
Analysis of Social Choice Revisited. In International Con-
ference on Web and Internet Economics, 290–309. Springer.
Gehrlein, W. V. 1985. The Condorcet Criterion and Com-
mittee Selection. Mathematical Social Sciences, 10(3): 199–
209.
Gehrlein, W. V.; and Fishburn, P. C. 1976. Condorcet’s Para-
dox and Anonymous Preference Profiles. Public Choice, 1–
18.
Golowich, N.; Narasimhan, H.; and Parkes, D. C. 2018.
Deep Learning for Multi-Facility Location Mechanism De-
sign. In Proceedings of the Twenty-Seventh International
Joint Conference on Artificial Intelligence, 261–267.
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