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Abstract

Committee-selection problems arise in many contexts and applications, and there has been
increasing interest within the social choice research community on identifying which properties
are satisfied by different multi-winner voting rules (e.g. [31]). In this work, we propose a data-
driven framework to evaluate how frequently voting rules violate axioms across diverse preference
distributions in practice, shifting away from the binary perspective of axiom satisfaction given
by worst-case analysis. Using this framework, we analyze the relationship between multi-winner
voting rules and their axiomatic performance under several preference distributions. We then
show that neural networks, acting as voting rules, can outperform traditional rules in minimizing
axiom violations. Our results suggest that data-driven approaches to social choice can inform
the design of new voting systems and support the continuation of data-driven research in social
choice.

1 Introduction

Committee selection is a central problem in social choice theory, wherein voters elect a committee
(subset of alternatives) based on their preferences [31, 21]. There are numerous properties or axioms
we might wish a multi-winner voting rule to satisfy, however many combinations of properties are
known to be impossible to satisfy simultaneously. Traditional research often focuses on ascertaining
which axiomatic combinations are possible or are satisfied by a voting rule. Such research is moti-
vated by a desire to identify rules which universally satisfy axioms deemed desirable for a particular
setting. However, in many instances, a voting rule may not satisfy an axiom but rarely violates it
in practice.

In this paper, we propose a data-driven framework to evaluate and explore voting rules axiomati-
cally. To do so, we establish a measure of axiom violation more fine-grained than binary satisfaction
and move away from worst-case analysis and towards an average case evaluation model. Using this
framework, we explore the relationship between underlying voter preference distributions and ax-
iomatic properties selected by common multi-winner voting rules using our average-case approach.
We then use machine learning to learn bespoke multi-winner voting rules that aim to minimize
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axiom violations as much as possible when electing a committee. These multi-layer perceptrons are
designed to select a set of alternatives based on preferences that violate certain axioms less frequently
than many well-known rules.

Specifically, we make the following contributions:

1. We initiate a data-driven measure of axiomatic violations for multi-winner voting rules.

2. We explore the relationship between the underlying preference distributions and the axiomatic
properties of committees selected by common multi-winner voting rules, illustrating the sensi-
tivity of many of these rules to the underlying voter population.

3. We empirically investigate how different multi-winner voting rules differ from each other both
in terms of the committees they select and the frequency with which they violate (sets of)
axioms.

4. We demonstrate that it is possible to use machine learning to discover novel multi-winner
voting rules that outperform existing rules under our evaluation framework.

In summary, this paper illustrates the power of using data-driven approaches and machine learning
to deepen our understanding of social choice and inform the design of new voting systems.

1.1 Related Work

Much prior work has both developed novel axioms to describe desirable properties, or shown that
particular axioms are satisfied by certain voting rules. Of relevance to our work, Elkind et al. develop
axioms for several types of multi-winner voting rules and establishes satisfaction results [18]. They
note, in particular, the difficulty of satisfying Dummett’s condition (where if a large enough group
of voters agree on a set of alternatives as their top choices, then those alternatives should be in
the winning committee) [15]. A similar approach is taken for rules and axioms based on approval
preferences [31, 37].

Our approach builds on data-driven axiomatic analysis [14, 20], drawing upon axioms from
the social choice literature. Our results vary greatly based on underlying voter preferences; these
are well-studied for the single-winner setting [17] but less is known for the multi-winner setting.
We use well-studied distributions shown to approximate human preferences or explore restricted
cases [6]. Recent work has highlighted differences in the winners of multi-winner voting rules on
generated and real-world preference data, emphasizing how some rules elect committees which are
quite different from each other, particularly Minimax Approval Voting, Chamberlin-Courant, and
sequential Chamberlin-Courant [22].

Other recent work has explored the possibility of using machine learning with social choice.
Prior work has primarily focused on approximating single-winner or probabilistic rules [34, 10, 30].
Existing work on learning new voting rules, primarily in single-winner settings, has studied learning
rules under specific axioms [3], reducing susceptibility to manipulation [23], or maximizing utility
without axiomatic focus [1]. One paper has explored the possibility of learning multi-winner rules
for participatory budgeting with a focus predominantly on measures of social welfare [20]. Our work,
instead, is focused on learning multi-winner rules aimed at minimizing axiom violations.

2 Preliminaries: Social Choice Building Blocks

Traditional research in social choice is typically based upon three cornerstones: voting rules, voter
preferences, and some measure of outcome quality. Voting rules aggregate voter preferences following
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some particular procedure aimed at maximizing some measure of quality. Rules may provide a single
winner, a ranking over alternatives, or a set of multiple winners. Voter preferences are the subjects of
aggregation; they are often modelled as originating from some fixed distribution or based upon data
from real-world voting applications. Preferences might be expressed as rankings over alternatives,
approvals, or even as raw scores. Measures of voting rule quality primarily fall into one of two
paradigms: social welfare, or axiomatic.

Figure 1: An illustrated overview of the principle
concepts in this paper. We apply an analytical frame-
work to identify relationships between each of three
fundamental cornerstones of social choice.

In this work we consider voting rules which
elect multiple winners, using either ordinal or
approval-based preferences sampled from a wide
variety of distributions, and focus exclusively on
a novel measure of the axiomatic properties of
voting rules. We now provide the basic nota-
tion used through the paper and describe each
of these three cornerstones in more detail.

Model and Notation

Let V be a set of n voters and M be a set of
m alternatives. Each voter vi ∈ V has a pref-
erence ranking over M where for ai, aj ∈ M ,
ai ≻v aj means that voter v ∈ V prefers al-
ternative ai to aj . A preference profile, P≻ =
(≻v1 , . . . ,≻vn) is a vector specifying the prefer-
ences of each voter. In addition to voters’ pref-
erences, we are also interested in the alterna-
tives that a voter approves. Let App(v) ⊂ M
be the approval set of voter v ∈ V , containing
the k most preferred alternatives of v. We let
PApp = (App(v1), . . . , App(vn)), and when it is clear from the context we will abuse notation and
let P refer to either P≻ or PApp. An election, E = (V,M), is defined by its voters and alternatives,
along with, implicitly, either preference profiles or approval sets of the voters.

We are interested in multi-winner voting rules. Given an election E and its associated P and
k, 1 ≤ k < m, Fk(E) ⊆ {C|C ⊂ M , |C| = k} is a multi-winner voting rule that returns a family
of k-sized subsets of M , called the winning committees. If Fk directly uses P≻ we call the voting
rule ordinal. If Fk uses PApp we say the voting rule is approval-based. We are interested in resolute
multi-winner voting rules and so assume that each rule uses some tie-breaking mechanism so that
only one committee is returned. Unless otherwise stated we use lexicographic tie-breaking, sorting
on the first non-shared alternative between committees.

2.1 Multi-Winner Voting Rules

We consider multi-winner voting rules from the existing literature which are broadly classified into
two categories: ordinal-based and approval-based. While much research focuses exclusively on just
one of either ordinal- or approval-based rules we intentionally include rules from both categories
in our study. This allows us to highlight behavioural differences among rules which are seldom
compared directly.

The ordinal rules which we explore consist of:

3



k-Borda: Each voter assigns m − 1 points to their top ranked alternative, m − 2 points to their
second ranked alternative etc. FBorda returns the k alternatives with highest scores.

Single Non-Transferable Vote: Each voter assigns one point to their most preferred alternative.
FSNTV returns the k alternatives with the highest points.1

Single Transferable Vote: FSTV recursively adds to the set of winners all alternatives ranked
first by voters with weight summing to more than a quota of n

k+1 . Each voter begins with a
weight of 1. When a winner, aw is found, each voter ranking aw first has their weight reduced
by an amount proportional to the excess weight voting for aw beyond the quota. If there is
not an alternative ranked first by a quota of weighted voters, the alternative ranked first by
lowest sum of voter weight is removed from all voter rankings [41].

We also consider the following approval-based rules:

Bloc: Define a score function scBloc(a) =
∑

v∈V 1{a∈App(v)} giving one point to each alternative

for each approval it receives. FBloc returns the committee C∗ containing the k alternatives
receiving the most approvals.

C∗ = arg max
C⊆M,
|C|=k

∑
a∈C

scBloc(a)

Proportional Approval Voting: Given committee C ⊆ M, |C| = k, define

scPAV(C) =
∑
v∈V

|C∩App(v)|∑
j=1

1

j
.

FPAV returns C∗ = arg max scPAV(C). Each voter contributes some score to each committee
based on the number of alternatives in the committee of which they approve; a voter approving
of r alternatives in C adds the r-th harmonic number to the score of the committee.

Chamberlin-Courant (CC): We consider three variations of the Chamberlin-Courant rule. For
committee C ⊂ M, |C| = k, define

scCC(C) =
∑
a∈C

∑
v∈V

1{|C∪App(v)|>0}.

scCC(C) is the number of voters who approve at least one alternative in C.

Approval CC is defined as FCC = C∗ where C∗ = arg max scCC(C).

Lexicographic CC, F lex-CC, maximizes scCC , breaking ties by selecting the committee max-
imizing the number of voters approving 2 alternatives (then, if ties remain, 3 alternatives,
etc.).

Sequential CC, seq-CC, constructs a winning committee by iteratively adding a ∈ M that
increases the scCC the most at each step.

1SNTV is an extension of plurality to the multi-winner context.
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Monroe: Considers all ways of assigning each voter one alternative in committee W , such that
every a ∈ W is assigned to between ⌊n

k ⌋ and ⌈n
k ⌉ voters. The score of an assignment is the

sum of Borda scores of each voter’s assigned alternative. FMonroe selects the committee with
the highest score.

Greedy Monroe, FGreedy M., constructs a winning committee iteratively following a similar
scoring process2.

Minimax Approval: FMAV selects the committee that minimizes the maximum Hamming dis-
tance between any voter’s approved alternatives and the committee.

Method of Equal Shares: FMES has two phases. First, each voter has a budget of k
n . Proceed

for up to k rounds: Adding a voter to the committee has a cost of 1, which can be split between
many voters. In each round, consider alternatives Ar which are not in the committee and are
approved of by voters that have a remaining budget summing to at least 1. If Ar is empty, go
to phase 2. Otherwise, select a ∈ Ar such that each voter approving of a must spend at most ρ
to add them to the committee. Add a to the committee, adjust the remaining budget of each
voter, and proceed to the next round. In the second phase, many possible rules can be used
to fill any remaining spots on the committee. We use the sequential Phragmen rule. MES
satisfies the JR and PJR axioms (but not the Core). See Lackner and Skowron for further
details [31].

E Pluribus Hugo: Also called “Single Divisible Vote with Least-Popular Elimination”; FEPH op-
erates in rounds. In each round, each voter divides a single point evenly between all remaining
alternatives of which they approve. Alternatives are ranked in order of total summed points
from all voters. The two alternatives with the lowest number of points are compared: the one
receiving the fewest approvals overall is eliminated. Rounds of elimination continue until k
alternatives remain. FEPH satisfies the Strong Pareto Efficiency axiom [38].

Random Serial Dictator: FRSD selects a single voter to serve as “dictator”. The winning com-
mittee is exactly the set of alternatives approved of by that voter.

Faliszewski et al. describe three categories for multi-winner voting rules: individual excellence
(electing alternatives which are individually well-liked), diversity (electing alternatives which are
different from each other), and proportionality (electing a committee which proportionally represents
the preferences of voters). The rules we use are generally aligned with one or two of these categories
[21, 22]:

Individual Excellence: FBorda, FSNTV, FBloc, FEPH

Diversity: FSNTV, FCC

Proportionality: FSTV, FPAV, FMonroe, FCC, FMES, FEPH

We categorize the variants of each rule in the same way as the original rule. We highlight
that these are subjective categorizations and are not mutually exclusive. For example, FCC has
been described as both diverse [22] and proportional [18]. For this reason we generally group the
two categories together. Additionally, FMAV and FRSD do not neatly fit into any category (FMAV

considers alternatives as sets, rather than individuals, but does not obviously aim to achieve diversity
or proportionality while FRSD considers only a single voter’s opinion).

2We refer the reader to Lackner and Skowron for a formal definition [31].
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2.2 Voting Rule Axioms

Much of the literature on voting rules is axiomatic, describing desirable properties that voting rules
may or may not exhibit. We focus exclusively on intraprofile axioms – axioms for which we can
determine a violation using only the preference profile being given to F and the resulting committee
[39]. Axioms can also be loosely categorized based on the stated priorities of their definitions.

We use the following axioms which describe aspects of individual excellence:

Majority Winner If ⌈n
2 ⌉ or more voters rank alternative x first in their ballot, then x is in the

winning committee [24].

Majority Loser If ⌈n
2 ⌉ or more voters rank alternative x last in their ballot, then x is not in the

winning committee.

Condorcet Winner A Condorcet committee C is one in which for all x ∈ C and for all y ∈ M \C,
the majority of voters prefer x to y. A voting rule satisfies the Condorcet Winner axiom if,
whenever one exists, it returns a Condorcet committee [26].

Condorcet Loser Let L ⊆ M such that for all x ∈ L, and y ̸∈ L, y is preferred to x by a majority
of voters. A voting rule satisfies the Condorcet Loser axiom if it never returns L [26].

Strong Pareto Efficiency Committee C dominates C ′ if every voter approves at least as many
alternatives in C as in C ′, and at least one voter approves strictly more alternatives in C
than in C ′. A multi-winner voting rule exhibits Strong Pareto Efficiency if it never returns a
dominated committee [31].

Fixed Majority If there exists a set of alternatives C, |C| = k and a set of voters X ⊆ V with
|X| > n

2 that all rank each alternative in C above each alternative not in C then the winning
committee is C [13, 18].

Strong Unanimity If every voter ranks the same k alternatives on top, then those alternatives
form the winning committee [18].

And we use the following axioms that prioritize diversity or proportionality.

Dummett’s Condition If there is a group of ℓ·n
k voters that all rank the same ℓ alternatives on

top, these ℓ alternatives are in the winning committee [15]. Also referred to as “Proportionality
for Solid Coalitions” in some literature [9].

Local Stability For q = ⌈n
k ⌉, committee C violates local stability if there exists a subset of voters

V ∗ with |V ∗| ≥ q and an alternative x /∈ C such that every voter in V ∗ prefers x to all members
of C [4]. We highlight in particular that a locally stable committee is not guaranteed to exist.
That is, it is possible for there to exist a preference profile for which any winning committee
would violate local stability.

Solid Coalitions If at least n
k voters rank some alternative x first, then x should be in the winning

committee [18].

Core A committee C is “in the core” if for each non-empty subset of V ⊆ V of voters, and each
non-empty subset of alternatives T ⊆ A with

|T |
k

≤ |V |
n
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there is a vi ∈ V such that |App(vi) ∩ T | ≤ |App(vi) ∩W |. That is, vi approves of at least as
many alternatives in W as they approve of in T . A voting rule satisfies the Core if it always
returns a committee that is in the core [31].

(Extended) Justified Representation For ℓ ≥ 1, a group of voters is ℓ-cohesive if (1) |V | ≥ ℓ · nk ,
and (2) |

⋂
i∈V App(vi)| ≥ ℓ.

A voting rule satisfies Justified Representation (JR) if for a winning committee C, it is always
the case that every 1-cohesive group of voters V contains a vi who approves of at least one
member of C; i.e. |W ∩App(vi)| ≥ 1.

A voting rule satisfies Extended Justified Representation (EJR) if for a winning committee
C, it is always the case that every ℓ-cohesive group of voters V contains a vi that approves of
at least ℓ winners, for 1 ≤ ℓ ≤ k [31].

Table 1 illustrates which existing voting rules are known to satisfy each axiom. Green entries
indicate known axiomatic satisfaction for a particular axiom and voting rule.

The axioms we use are only one possible set and were chosen to represent a wide variety of
desirable properties. While our framework is general and applies to any set of intra-profile axioms,
we include a study of the relationships between these axioms in Appendix A. While relationships
between some of our axioms are already described in the literature, we also identify several novel
relationships where the satisfaction of one axiom implies the satisfaction of another.

2.3 Preference Distributions

We use a wide range of standard preference distributions (D) through our experiments. These are
used both for training novel multi-winner rules, as well as testing novel and existing rules. Note that
we generate ordinal ballots and, when needed by a particular rule, convert them to an approval-
based format where each voter approves of their k top-ranked alternatives. There are many other
valid methods of generating approval ballots which we do not explore.

Through our experiments we consider 8 unique families of preference distribution, as well as
two additional sets of preferences. We loosely categorize each of these distributions by the amount
of structure within the preferences they generates, from Identity preferences where all voters are
identical to Impartial Culture where voters are assigned preferences uniformly at random.

Unstructured Distributions

Impartial Culture: Each voter draws its preference ranking from a uniform distribution over
all possible rankings [29].

Impartial Anonymous Culture: Given n voters, each n-element multiset of preference
rankings is drawn from a uniform distribution [27].

Moderately Structured Distributions

Mallows: Given reference ranking σ and dispersion parameter θ, the probability of drawing
ranking r is P (r|σ, θ) = 1

Z θd(r,σ) where Z is a normalization factor and d(r, σ) is the Kendall-
Tau distance between rankings r and σ [33, 6].

Urn: Parameterized by α. All m! preference orders exist in an “urn.” Voters select orders
consecutively. After a preference order is selected, it is returned to the urn along with α! copies
of the ranking [16].
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Euclidean: Parameterized by a dimension and a topology. Voters and alternatives are placed
randomly within the chosen space and preferences correspond to the distance from each voter
to each alternative [19].

Highly Structured Distributions

Identity: All voters in V have identical preferences.

Single-Peaked: A global ordering of alternatives exists; each voter has a favourite alternative
and prefers alternatives closer to their favourite over those further [5].

Stratification: Parameterized by a weight w ∈ (0, 1). Alternatives are split into two classes
with the first class’s size proportional to w. All voters rank all alternatives in the first class
above those in the second class. Within a class voters rank alternatives uniformly at random [6].

Additional Preference Distributions

Mixed: In addition to preference distributions taken on their own, we consider a distribution
consisting of profiles sampled from every other distribution with equal probability.

PrefLib: We include all applicable strict, complete preference profiles from PrefLib, an online
repository of human preference data [35]. The amount of PrefLib data applicable to our setting
is not sufficient for learning from; we use this data exclusively during evaluation.

3 Data-Driven Voting Rule Analysis

Traditionally, axiomatic analysis of voting rules asks whether a rule satisfies some axiom universally,
which is a binary question. In the real world and synthetic preference profiles, however, the gap
between worst-case analysis and average-case behaviour can be quite large. Rules that are known to
explicitly not satisfy an axiom may very rarely violate such an axiom in practice. The key insight,
and motivation, for such a shift in analyzing a voting rule is that a fine-grained and empirical lens
reveals real and meaningful information on how rules behave across distributions, which are not
considered when only looking at axiomatic satisfaction as a binary question.

We introduce two measures that we use to understand the behaviour of voting rules. The
data-driven analysis we employ is very well-suited to exploring deep non-binary measures of axiom
satisfaction. We capture this by measuring the rate at which the outcome of voting rules violates
an axiom. We also study the amount of overlap between committees elected by voting rules. This
provides us an indication of how similar two rules in practice, regardless of how they function
internally.

While both of our data-driven metrics are affected by each of the three cornerstones of our social
choice framework, they are more naturally associated with certain components. The axiom violation
rate captures the interplay between axiomatic performance and voting rule behaviour3 while the rule
difference measure reveals connections between preference distributions and voting rules4.

3We argue that preferences are less intrinsically related to axiom violations than our other cornerstones: in the
cases where a voting rule satisfies a particular axiom then the underlying preference distribution has no bearing on
the violation rate.

4This is because axioms have no direct bearing on the output of any given voting rule – although they may
indirectly influence the design of voting rules.
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3.1 Axiom Violation Rate

We begin by formalizing the axiom violation rate (AVR) as our core metric for empirical axiomatic
performance. As we focus exclusively on intraprofile axioms, we can determine whether an axiom is
violated by a preference profile using only the voting rule F and the profile itself.

We now define a measure of the frequency that an axiom is violated by a voting rule on given
preference profiles. If axiom A is violated by a specific preference profile P and committee c, we say
A(P, c) = 1. If A is not violated, A(P, c) = 0. Then, we define the axiom violation rate (AVR) of F
on a set of profiles P over axioms A as:

AVR(F ,P,A) =
1

|A||P|
∑
A∈A

∑
P∈P

A(P,F(P ))

3.2 Rule Differences

We also measure overlap between elected committees. This tells us (1) whether rules with similar
AVR elect similar underlying committees, and (2) the degree of similarity between committees
elected by rules with differing AVRs. We say ∩+

P (F1,F2) = F1(P ) ∩ F2(P ) and ∩−
P (F1,F2) =

(M \F1(P ))∩ (M \F2(P )). We also define a normalization factor δ = m
m−|m−2k| which ensures the

difference between two rules on a given set of profiles P has a range from 0 to 1.

d(F1,F2,P) = δ − δ

m|P|
∑
P∈P

| ∩+
P (F1,F2)| + | ∩−

P (F1,F2)|

4 Learning Rules to Satisfy Axioms

We now describe FNN, a novel voting rule with a functionality directly based upon goals rooted
in our cornerstones of axiom satisfaction and voter preferences. Functionally, FNN is multi-layer
perceptron trained to predict a winning committee based on a given preference profile. This section
outlines the procedure we use to train the model. Specific details on the parameters used to train
FNN in our experiments are included in section 5.

4.1 Generating Axiom Violation Data

We generate separate training sets (used by FNN) and testing sets (used to evaluate all rules). A
single example in a dataset is generated as follows:

1. Given some preference distribution, D (see subsection 2.3) sample a preference profile P from
D

2. Randomly rename each alternative in P .5

3. Find, by exhaustive search, the committee c = arg minc

∑
A∈A A(P, c) minimizing the number

of axiom violations in A with ties broken lexicographically.

5Renaming alternatives ensures that our data satisfies neutrality by treating alternatives identically. Otherwise,
some preference distributions are biased towards specific outcomes. For example, our identity distribution only
generates the ranking a1 ≻ a2 ≻ ... which will bias a network to always elect a1 through ak.
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4.2 Input Data Structure

We transform each preference profile into three separate matrices, preserving aspects of voter pref-
erences while reducing input size to depend only on m, the number of alternatives. This ensures
models are applicable for any number of voters n, while being specific to m and committee size k.

Majority Matrix The preference profile is transformed into an m × m matrix Rmajority with
Rmajority

ij = 1 if a weak majority of voters prefer ai to aj and 0 otherwise.
Weighted Preference Matrix The preference profile is transformed into an m × m matrix

Rweighted with Rweighted
ij = c to indicate that c voters prefer ai over aj .

Ranking Matrix The preference profile is transformed into an m × m matrix Rranked where
Rranked

ij = c indicates that c voters rank ai in position j.
The majority and weighted preference matrices correspond, respectively, to tournaments and

weighted tournaments in the literature [8]. We flatten these matrices to 1-dimensional arrays.
Rweighted and Rranked are stored in a normalized form so that the model output is agnostic of
the exact number of voters present. We concatenate each of these arrays to form the input to our
models. To simplify notation, we continue to write F(P ) when discussing the output of a trained
model; however, in place of P , the function receives only the above transformations of P .

4.3 Model Loss

During training, committees of input examples are encoded as k-hot vectors: e.g. [0, 1, 1, 0, 1]
indicates that alternatives 2, 3, and 5 are in the winning committee while alternatives 1 and 4 are
not in the winning committee. Our model uses the L1 loss function6, defined as:

L1(y, ŷ) =
1

n

n∑
i=1

|yi − ŷi|

where y is the committee from the training example and ŷ is the model’s predicted output. As
the model does not output integer values, the output must be processed to form a committee: the
highest k values in the length m list output by the model are set to 1 while the other values are set
to 0.

5 Experimental Results and Analysis

We now describe the experiments we have run, provide their results and discuss their implications.
From both existing and learned rules we are able to extract novel conclusions about each of our
cornerstones and the learnability of novel rules.

5.1 Experimental Training Parameters

In our experiments we learn two different rule configurations. These configurations differ primarily
in which axioms are evaluated in the loss function.

Learning Configuration 1: All Axioms Our initial learned rule FNN-all is trained on data
generated from evaluating violations for all axioms we have described. We train FNN-all on all test
distributions described below.

6We tested all applicable loss functions in Pytorch and found that L1 Loss provided the best results [36].
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Figure 2: Axiom violation rate averaged over all axioms for each number of voters and winners on Mixed
preferences.

Learning Configuration 2: Root Axioms We also train FNN-root on a second set of axioms:
those axioms which, if satisfied, imply the satisfaction of all other axioms we use. This includes:
Majority Loser, Condorcet Winner, Dummett’s Condition, Local Stability, Strong Pareto, and the
Core. See Appendix A for details of these axiom relationships. We train FNN-root on all test
distributions described below, except as noted.

5.1.1 Preference Distributions

Across both configurations most parameter values are held constant. We train (as applicable) and
test all rules (learned and existing) on all combinations of m = {5, 6, 7} alternatives and k =
{1, 2, ...,m− 1} winners. In all cases we use profiles with n = 50 voters. All rules are evaluated on
25,000 profiles sampled from each of the following test distributions with learned rules being tested
on the distribution upon which they were trained.

• IC, IAC, Identity take no parameter

• Mallow’s with θ sampled uniformly at random as described by Boehmer et al.[7].

• Urn with α sampled from a Gamma distribution [6].

• Single-peaked distributions as described by Conitzer [11] and Walsh [43].

• Stratification with w = 0.5.

• 8 Euclidean distributions with each combination of: 3 or 10 dimensions, a Ball or Cube topol-
ogy, and Uniform or Gaussian placement of voters. Note: Due to the similarity of results across
Euclidean distributions from FNN-all, we trained FNN-rootonly on one Euclidean distribution,
the 3-dimensional Gaussian Ball.

• 1 distribution containing an even mixture of the 16 other distributions. We test mixed distri-
butions on FNN-all and pre-existing rules, but not FNN-root.
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Figure 3: Axiom violation rates for each rule under each individual preference distribution for m = 7. In
all cases, FNN-all has AVR lower than, or similar to, other rules.

5.1.2 Learning Parameters

For each configuration, we train 20 neural networks using PyTorch [36], with 5 hidden layers of 256
nodes. Networks are trained for up to 50 epochs using the Adam optimizer with a learning rate
of 0.0001, stopping early if no improvement of 0.0005 occurs over 10 epochs. We generate separate
training and testing data sets of 25,000 examples each for all 255 unique combinations of m, k, and
D. Each profile contains 50 voters7. We do not filter profiles to ensure no overlap between training
and test sets but find that there is minimal overlap between these sets in almost all cases. 8

5.2 Understanding Our Cornerstones

We first examine what we can observe by considering each pair of our three cornerstones: axioms,
voting rules, and preferences. By examining multiple aspects of our area of focus we are able to
form novel connections between each topic.

7In preliminary experiments we have trained networks using data containing a number of voters sampled from a
normal distribution truncated between 25 and 75 voters. We found no difference to performance and use profiles with
50 voters for simplicity.

8In the identity distribution all profiles are identical. On profiles sampled from the Urn distribution for 5, 6, and
7 alternatives roughly 3.5%, 2%, and 0.5% of profiles overlapped on a training distribution of 25,000 profiles. For
Mallows preferences with 5 alternatives, up to 0.2% of profiles overlap. In all other cases training distributions have
zero overlap.
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NN-all .017 .000 .000 .015 .000 .004 .000 .000 .061 .001 .001 .001 .046 .092

NN-root .038 .001 .030 .200 .010 .045 .024 .000 .056 .000 .000 .002 .044 .082

Min .009 0 .001 .036 0 .001 .001 0 .012 0 .000 .000 .005 .059

Max .440 .125 .340 .919 .635 .620 .175 .076 .555 .234 .354 .381 .521 .787

Borda .021 .001 .004 .125 0 .004 .011 0 .044 .000 .000 .000 .031 .056

EPH .040 .000 .001 .270 .002 .000 .001 0 .082 .000 .000 .000 .063 .096

SNTV .099 0 .098 .619 .007 .227 .106 .049 .062 .001 .054 .058 0 .012

Bloc .039 .000 .001 .254 .002 0 0 0 .080 .000 .000 .000 .061 .106

STV .048 0 .037 .442 .002 .118 .029 0 0 .000 .000 .001 0 .001

PAV .043 .001 .001 .308 .002 0 .004 0 .088 0 0 0 .068 .091

MES .049 .001 .002 .351 .002 .001 .008 0 .096 0 0 0 .075 .095

CC .195 .036 .146 .756 .031 .344 .141 .062 .308 0 .084 .091 .232 .301

seq-CC .183 .032 .139 .740 .025 .297 .140 .061 .292 0 .078 .081 .216 .278

lex-CC .061 .005 .007 .440 .002 0 .024 0 .117 0 .000 .000 .091 .112

Monroe .130 .007 .078 .649 .026 .234 .060 0 .214 0 .002 .006 .180 .231

Greedy M. .063 .002 .019 .448 .003 .012 .023 0 .112 0 0 0 .089 .118

MAV .157 .022 .110 .750 .044 .279 .084 0 .219 .015 .022 .022 .179 .300

RSD .105 .008 .056 .594 .016 0 .036 0 .148 .030 .032 .033 .120 .299

Random .237 .063 .171 .845 .057 .406 .160 .071 .326 .049 .125 .134 .252 .419

Table 1: Axiom violation rates for 7 alternatives averaged over all distributions and numbers of winners.
Voting rules and axioms are separated to indicate to which category of rule/axiom they belong. Root axioms
are underlined. Bold values indicate the best result of a column, italic values have been rounded to zero.
Shaded green indicates that previous work has shown the rule satisfies this axiom [18, 31]. Due to differences
in tie-breaking with previous work, some edge cases do not match prior theoretical results.

5.2.1 Axioms and Voting Rules

In Table 1 we show the violation rate of each voting rule on each individual axiom, as well as an aver-
age violation rate over all axioms. This allows us to directly explore the relationship between voting
rules and axiomatic performance. After dividing rules and axioms into their informal categories of
excellence-based or diverse/proportional some consistent patterns emerge.

Excellence based rules generally have quite low axiom violation rates. Being good at excellence-
based axioms leads to strong performance on diverse/proportional axioms. The axioms that are
formally satisfied by some proportionality-based rules (i.e., JR, EJR) are almost never violated in
practice by most excellence-based rules. Other proportionality-based axioms, such as Solid Coali-
tions, are violated more frequently by all diverse/proportional rules except FSTV.

Observation: Alternatives which are liked individually are also likely to be members of com-
mittees which provide strong proportional properties. Identifying the alternatives which are liked
individually may be easier to do well at than identifying strong sets of alternatives.

Observation: Certain axioms – Condorcet Winner, Dummett’s Condition, Local Stability – are
significantly harder to avoid violating than others. This pattern is consistent across all rules and is
also reflected in the violation rate of the best committees on these axioms.

Observation: Learning a rule to minimize axiom violation rate results in strong performance
across all axioms. Curiously, the learned rules violate the Condorcet Winner condition at a rate
lower than they would were they to perfectly minimize violations across all axioms.
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Observation: Learning basic axioms can inform us about more complex axioms. FNN-root, the
rule trained to minimize violations on only the root axioms, has an average violation rate lower than
most rules but much higher than FNN-all. Notably, FNN-root has a higher violation rate on most
root axioms than FNN-all.

5.2.2 Axioms and Preference Distributions

Figure 4: Violation rates of each axiom for every preference distribution, averaged over all rules. This
shows trends common across all rules in the relationships between axioms and preference distributions.

We visualize the relationship between axioms and preferences in Figure 4. Some previous trends
are visible – the Condorcet Winner axiom is violated frequently in almost all distributions, generally
at a similar rate regardless of the number of winners.

Observation: Distributions with medium or high levels of structure exhibit quite different ax-
iomatic patterns than other distributions with the same level of structure. This is most surprising
in the large differences across Single-Peaked distributions. In fact, on many individual rules Local
Stability is violated on Conitzer’s Single-Peaked distribution at quite a high rate rate while Walsh’s
Single-Peaked preferences do not result in violations of Local Stability.

Observation: Figure 3 shows a spike in maximum violation rate occurring in most distribu-
tions when selecting a committee that contains less than half of alternatives. This is likely an
artifact of specific axioms: For example, on Identity preferences it is impossible to violate Justified
Representation when choosing a committee containing more than half of alternatives.
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5.2.3 Voting Rules and Preference Distributions

We now focus primarily on voting rules and preferences. Figure 3 shows the axiom violation rate
averaged over all axioms for each different voting rule. As we would expect, highly structured prefer-
ence distributions (Identity, Single-Peaked, Stratified) have correspondingly higher axiom violation
rates by most rules. This is natural as additional structure provides more opportunity to violate
axioms, as shown by FMax which is much higher for these distributions. Similarly, in distributions
with low structure (Impartial Culture, Impartial Anonymous Culture) the maximum violation rate
is quite low. Again, we find this intuitive: if all alternatives have equal support then any committee
becomes an equally reasonable choice and reasonable axioms should not be violated.

In looking at the behaviour of specific rules on each distribution we can make more fine-grained
observations:

Observation: On Stratified preferences, F seq-CC, FMAV and FCC have higher violation rates
than other rules. When k > 2, F seq-CC has an AVR very similar to random committees. The
“phase shift” change in violations as k > 3 alternatives are approved correlates with the election of
an alternative in the bottom half of the stratified preferences. Recall that there is some set of ⌊k

2 ⌋
alternatives who are all more preferred by every voter than the other alternatives. When k > 3 at
least one of these unpopular alternatives is elected which, intuitively, causes violations.

Observation: Tie-breaking methods become important when ties are common. While perhaps
an obvious statement, this observation explains the unusually high violation rates of FCC, F seq-CC,
and FSNTV on Identity preferences.

5.2.4 Voting Rule Differences
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Borda .000 – – – – – – – – – – – – –

EPH .248 .000 – – – – – – – – – – – –

SNTV .463 .420 .000 – – – – – – – – – – –

Bloc .248 .021 .417 .000 – – – – – – – – – –

STV .315 .360 .299 .359 .000 – – – – – – – – –

PAV .255 .051 .429 .065 .365 .000 – – – – – – – –

MES .271 .118 .412 .130 .373 .086 .000 – – – – – – –

CC .600 .483 .588 .487 .572 .464 .496 .000 – – – – – –

seq-CC .568 .484 .464 .492 .566 .467 .431 .672 .000 – – – – –

lex-CC .310 .133 .451 .144 .396 .089 .117 .440 .461 .000 – – – –

Monroe .514 .396 .531 .400 .491 .376 .408 .117 .618 .366 .000 – – –

Greedy M. .334 .223 .428 .232 .404 .203 .170 .512 .402 .218 .431 .000 – –

MAV .611 .599 .694 .598 .617 .597 .612 .342 .813 .587 .344 .635 .000 –

RSD .486 .465 .586 .464 .526 .467 .470 .646 .629 .481 .577 .484 .626 .000

Random .714 .714 .714 .714 .714 .714 .714 .714 .714 .714 .714 .714 .714 .714

Min .158 .261 .476 .254 .325 .278 .300 .566 .598 .331 .481 .361 .561 .490

Max .940 .936 .865 .941 .912 .930 .922 .813 .748 .913 .866 .904 .833 .856

NN-all .147 .240 .484 .232 .335 .258 .283 .569 .593 .315 .484 .349 .562 .484

NN-root .375 .395 .539 .392 .424 .403 .414 .530 .661 .432 .411 .443 .426 .496

Table 2: Difference between rules for 7 alternatives with 1 ≤ k < 7 averaged over all preference distributions.
Darker values correspond to larger differences. A difference of 0 between two rules indicates the rules always
elect the same committee while a difference of 1 indicates that the rules’ winning committees have maximal
overlap.
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In Table 2 we show the mean difference between each rule based on the overlap between their
elected committees. As expected, randomly chosen committees and FMax are almost always the most
different than committees returned by all other rules. Surprisingly, there are exceptions: FMAV and
F seq-CC elect committees with less overlap than occurs with a randomly chosen committee. This
indicates that these rules optimize for different, and mutually exclusive, goals. Other pairs of rules
that are more different from each other than they are random committees can be found in Appendix C
and our supplementary files, typically involving FMAV, F seq-CC, and FCC. Oddly, F seq-CC, and FCC

typically elect highly distinct committees despite similar definitions. Note that all the differences
from random committees listed in Table 2 are identical, this is merely an effect of rounding. The
values are all close, however, due to the nature of random selection of winners.

On the other hand, we can observe rules with quite similar definitions: FBloc, FPAV and FEPH all
follow some procedure that award an equal number of points to a set of alternatives. Each of these
rules have very low distance from the others, indicating that the minor differences in their definitions
have relatively little effect on the committees they elect. Unsurprisingly, FNN-all is most similar to
FMin. This is understandable given that FNN-all is trained to find committees that minimize the
number of axiom violations. It is also interesting that FBorda is relatively close to FMin, though,
this is expected given that FBorda was one of the best performing rules in our experiments. Overall,
there does seem to be a trend of better performing rules being more similar to one another, and
poorer performing rules being more similar to one another.

5.3 Learning From Learned Rules

As we see in Table 1, both learning configurations (optimizing for all axioms, and for only root
axioms) result in rules with strong axiomatic performance. Averaged across all axioms, FNN-all has
a lower violation rate than any existing rule we evaluated while FNN-root has a lower violation rate
than all rules but FBorda. While these results are still above the lowest possible violation rate, as
given by FMin, they show that networks are very capable of identifying committees that provide
good axiomatic properties.

By learning two different sets of axioms we are able to both deepen our understanding of which
axioms are more difficult to learn and to gauge whether learning “redundant” axioms with FNN-all

is beneficial. As FNN-root has a much lower violation rate, it is clearly beneficial to learn from all
axioms. This is intuitive, FNN-all has the opportunity to learn to satisfy non-root axioms even in
cases when root axioms may not be possible to mutually satisfy. However, even when evaluating only
the root axioms, FNN-all has an average violation rate of 0.0283 compared to an average violation
rate of 0.0692 for FNN-root. Training on the additional axioms appears to provide enough additional
signal to the learning process which reduces violations of root axioms.

5.4 Real-World Data

Using networks trained on the Mixed distribution, we applied each FNN-all to a selection of real-world
data collected from PrefLib [35]. We find that this highlights the sensitivity of learned models to
their training data: our Mixed distribution is not a perfect match of the distribution underlying the
empirical data we tested on. Nonetheless, we find that FNN-all generalizes well, having, for example,
a mean AVR of 0.102 compared to an AVR of 0.303 for committees selected at random. For more
details and results of these experiments we refer to Appendix B.
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5.5 Optimized Positional Scoring Rules

The low axiom violation rate of FBorda inspires a natural follow-up question: Is there a positional
scoring rule which provides even stronger performance than FBorda? A positive answer here would
be interesting both to practitioners and theorists. The black box nature of the neural networks
underlying each FNN restrict these rules from being applied in settings where interpretability and
reliability are vital. On the other hand, positional scoring rules provide an immediate intuition as to
the behaviour of the rule that allows them to be applied in practice (e.g., the Plurality rule can be
said to reward voter’s favourite alternatives while the Anti-Plurality rule punishes those alternatives
least preferred by voters [8]). Theoreticians may find novel positional scoring rules interesting as
such rules could point in the direction of new results or points of analysis.

All Axioms Root Axioms

k FBorda FOpt FBorda FOpt

1 0.010 0.008 0.019 0.016
2 0.011 0.011 0.021 0.018
3 0.022 0.018 0.036 0.032
4 0.030 0.025 0.044 0.043
5 0.034 0.028 0.042 0.044
6 0.025 0.022 0.030 0.027

Table 3: Axiom violation rate for m = 7 alterna-
tives on both axiom sets by FBorda and the positional
scoring rule found via simulated annealing, FOpt.

As positional scoring rules have a natural
“state” (their score vector) we are easily able to
apply generic optimization techniques to find new
vectors which may have low axiom violation rates.
To do this, we use the optimal-voting package
[2] which uses simulated annealing to optimize a
score vector. We set the loss function equal to
the axiom violation rate and run annealing for
Mixed preferences using m = 7 alternatives only,
with one annealing run for each number of win-
ners. We refer to a rule optimized in this manner
as FOpt. Due to computational and time con-
straints we run for only 1000 steps, using 2000
profiles sampled from the larger set of 25,000 pro-
files. All rules have an initial state corresponding
to the Borda rule. We then evaluate the violation rates of each rule on a different set of 25,000
profiles from the Mixed distribution to ensure that our results do not simply reflect overfitting on
the training data.

Table 3 shows the results of annealing using all axioms in the loss function, and using just root
axioms. The vectors resulting from annealing are included in Appendix C.1. We highlight that our
optimization process is quite limited in both data and number of steps. Despite this, optimization
consistently finds some vector that outperforms FBorda. These vectors also display a common trend;
each optimized score vector awards higher points to the first k alternatives, then significantly reduces
the number of points awarded. This suggests a trend towards a vector similar to k-approval (where
each voter’s most preferred k alternatives receive a single point). However, we note that the k-
approval rule itself proves to have far worse axiomatic properties than both FOpt and FBorda. These
preliminary results leave open the possibility of some novel class of score vector which follows a
different decreasing sequence than FBorda.

6 Discussion

We have shown that (1) different multi-winner voting rules elect committees that are distinct from
one another and violate axioms at different rates, (2) these differences depend greatly upon the
underlying preferences of voters, and (3) it is possible to learn novel rules which result in significantly
lower axiom violation rates. These contributions join a growing body of work demonstrating the
effectiveness of combining machine learning with social choice [28, 12, 32] and adds to the literature
extending axiomatic analysis beyond the worst case [25]. We highlight findings of particular note to
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the broader research community along with and opportunities for future work.
Competing Definitions of Proportionality We observe two contrasting types of proportionality
among our axioms. Core, EJR, and JR are formally linked (each a weaker version of the former)
[31] while Local Stability, Dummett’s, and Solid Coalitions have distinct origins. Most voting rules
violate the first three of these axioms similarly, while there is much more variability in AVR on axioms
from the second type. Clear distinctions between these two types of proportionality are missing in
the literature. For example, FCC and FMonroe “explicitly aim at proportional representation” [18]
yet these rules violate Dummett’s Condition, Solid Coalitions, and Local Stability frequently while
maintaining a low AVR on JR, EJR, and the Core.
Proportionality and Electing Losers The high AVR of the proportional rules FCC and FMonroe

for the Condorcet Loser and Majority Loser axioms demonstrates a fundamental tension between
(some types of) proportionality and avoiding bad alternatives. To satisfy proportionality, it may be
necessary to elect an alternative ranked low by a majority of voters. New axioms may aim to bridge
this gap by formally considering a balance between proportional representation and electing highly
polarizing alternatives.
Individual Excellence and Proportional Rules Rules focused primarily on electing alternatives
which are individually popular among voters generally result in fewer violations of axioms focused
on proportionality than rules with a state goal of proportionality. If proportionality guarantees
can be established for individual excellence rules this would allow benefitting from their superior
performance in settings where proportionality is important.
Learning Simple Axioms Targetting both simple and complex axioms resulted in FNN-all having
superior performance to FNN-root. This suggests that future axiom learning tasks could be enhanced
by introducing simple dummy axioms that provide some feedback about more complex axioms (e.g.,
a majority winner must always be in a Condorcet winning set, so the Majority Winner axiom may
be seen as informative about Condorcet Winner).
Difference Between Rules Our results can be qualitatively compared with existing maps of multi-
winner elections [22]. In particular, in both their work and ours: (1) rules focused on individual
excellence elect different committees than proportional rules, and (2) FMAV is very different from
all other rules.

6.1 Future Directions

There are several interesting directions that this work can take. First, our research can be directly
extended to support arbitrary sets of intraprofile axioms and extensions to the more general class of
interprofile axioms [39, 40]. This would allow us to measure violations of additional axioms such as
consistency or clone-proofness [8].

Second, we proposed a new metric for evaluating voting rules, the axiom violation rate. While
impossibility theorems show that some axioms can never be mutually satisfied; in these cases, an
interesting challenge for future research is to develop new rules optimized for low axiom violation
rate. Using black-box machine learning techniques may be sufficient, however identifying classes
of rule (such as positional scoring rules) which can be optimized in a way that provides a reliable,
interpretable outcome will provide additional usability.

Finally, we are interested in extending our metric of axiom violations to allow robust, theoretical
conclusions about axiomatic properties – similar to those provided by the PAC-learning framework
[42]. We believe that such an approach would complement both the axiomatic and the empirical
studies of voting rules.
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Figure 5: Satisfaction relationships between axioms that we consider. An arrow from node X to node
Y indicates that satisfying axiom X also leads to satisfaction of axiom Y, or the equivalent contrapositive:
violating Y also implies a violation of X. Blue nodes are those originating in ordinal settings while green
nodes originate in approval-based settings. A dashed line indicates that the connection relies upon our
assumption that each voter approves of their k top-ranked alternatives.
Root Nodes: Local Stability, Dummett’s, Condorcet Winner, Strong Pareto, Core, Majority Loser.

A Details on Axiom Relationships

This section describes the satisfaction relationships between the axioms we consider. We show in
Figure 5 that many of the axioms we use are necessarily satisfied if some other axiom is satisfied.
Some of these relationships have been previously described while several represent novel connections.
We do not claim that these results are complete; other connections may exist which we have not
identified. This section serves to provide some intuition as to which axioms are more or less similar
to others.

A.1 Known Relationships

We first list pairs of axioms for which we know that one implies the other. As this is not the primary
focus of our paper, our proofs remain at a high level and are relatively informal.

Relationship 1. Condorcet Winner =⇒ Fixed Majority

A Fixed Majority is a set of voters that is a Condorcet winning set. Thus, satisfying the Condorcet
Winner property will also lead to satisfaction of Fixed Majority.
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Relationship 2. If the selected committee has at least k ≥ 2 alternatives, then Solid Coalitions
=⇒ Majority Winner

Let X refer to the set of all alternatives ranked first by at least n
k voters. If Solid Coalitions is

satisfied then every member of X is in the winning committee. A majority winner is one ranked
first by n

2 ≥ n
k voters. Thus, if Solid Coalitions is satisfied and a majority winner exists, then it is

elected. Note that this is not the case when k = 1. Then, X contains only an alternative that is
unanimously ranked first which may not include a majority winner.

Relationship 3. If every voter approves of exactly their k top-ranked alternatives, then Solid Coali-
tions =⇒ Justified Representation.

In order to satisfy JR, whenever at least n
k voters approve of an alternative, one of those voters

must approve of one of the elected alternatives. SC requires that whenever n
k voters rank some

alternative c first, this alternative is in the winning set.
If SC is satisfied then, by assumption, whenever there exists a set of at least n

k voters who all
rank an alternative first, they also approve that alternative and elect it.

Relationship 4. If a locally stable committee exists, then Local Stability =⇒ Solid Coalitions.

Consider a locally stable committee C. Say there exists a set of voters V ∗ with |V ∗| ≥ n
k who

all rank candidate x first. If x ∈ C then Solid Coalitions is satisfied. If x /∈ C then the committee
is not locally stable and we have a contradiction. Thus, a locally stable committee will always elect
an alternative required by Solid Coalitions.

Relationship 5. If a locally stable committee exists, then Local Stability =⇒ Strong Unanimity.

Consider a locally stable committee C and a profile in which all voters rank the same k alter-
natives above all others. If C were not exactly the k top-ranked alternatives, then there would be
some alternative not in C preferred by all voters, and C would not be locally stable.

Relationship 6. If every voter approves of exactly their k top-ranked alternatives, then EJR =⇒
Strong Unanimity.

If there exists a profile in which all voters rank the same k alternatives above all others (and, by
assumption, are exactly the approval set of each voter), these voters form a k-cohesive group and, if
EJR is satisfied, will form the winning committee.

Relationship 7. If every voter approves of exactly their k top-ranked alternatives, then Strong
Pareto =⇒ Strong Unanimity.

Say there exists a profile in which all voters rank the same k alternatives above all others and,
by assumption, form the approval set of each voter. Any committee which is not exactly these k
alternatives will be dominated by a committee containing these k alternatives so when voters are
unanimous Strong Pareto is sufficient to elect their preferred committee.

Relationship 8. If a locally stable committee exists with at least k ≥ 2 members, then Local Stability
=⇒ Condorcet Loser.

For any preference profile with a Condorcet losing committee C, there exists some alternative
x /∈ C which is preferred by at least n

2 voters to every alternative in C. Under our assumption that
k ≥ 2, a locally stable committee cannot contain any alternative y such that x is preferred to y by
more than n

2 voters. Thus, a locally stable committee is not a Condorcet Loser.
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Relationship 9. Fixed Majority =⇒ Strong Unanimity.

If every voter ranks the same k alternatives on top, those alternatives constitute a fixed majority
committee and will be elected if FM is satisfied.

Relationship 10. Dummett’s =⇒ Solid Coalitions.

We refer to Elkind et al. [18] for discussion of this relationship.

Relationship 11. Dummett’s =⇒ Unanimity.

We refer to Elkind et al. [18] for discussion of this relationship.

Relationship 12. Core =⇒ EJR =⇒ JR.

We refer to Lackner and Skowron [31] for discussion of these relationships.

A.2 Relationships Known To Not Exist

We also include some counter-examples showing certain relationships that do not exist. While it is
the case that Figure 5 may be missing edges we show here some of the edges that we thought may
exist due to the similar nature of certain axioms, but can be demonstrated not to exist.

Relationship 13. Condorcet Winner
/

=⇒ Dummett’s and Dummett’s
/

=⇒ Condorcet Winner.

Say that n = 10, l = 2, k = 5 and consider voters with the following preference orders:
v0 0 ≻ 1 ≻ 2 ≻ 3 ≻ 4 ≻ 5 ≻ 6 ≻ 7 ≻ 8 ≻ 9
v1 0 ≻ 1 ≻ 4 ≻ 5 ≻ 6 ≻ 7 ≻ 8 ≻ 9 ≻ 2 ≻ 3
v2 0 ≻ 1 ≻ 6 ≻ 7 ≻ 8 ≻ 9 ≻ 2 ≻ 3 ≻ 4 ≻ 5
v3 0 ≻ 1 ≻ 8 ≻ 9 ≻ 2 ≻ 3 ≻ 4 ≻ 5 ≻ 6 ≻ 7

6 × vmaj 9 ≻ 8 ≻ 7 ≻ 6 ≻ 5 ≻ 4 ≻ 3 ≻ 2 ≻ 1 ≻ 0

A group of l·n
k = 4 voters (v0, v1, v2, v3) rank the same 2 alternatives, {0, 1}, on top. These

alternatives must be in the winning committee in order to satisfy Dummett’s Condition. However,
the Condorcet winning set is {9, 8, 7, 6, 5}. In this case, any possible winning committee will violate
at least one of Condorcet Winner and Dummett’s condition.

Relationship 14. EJR
/

=⇒ Dummett’s.

Consider the following preference profile and say we are choosing k = 5 winners. For convenience,
a vertical bar separates the approved alternatives and the disapproved alternatives.

v0 0 ≻ 6 ≻ 2 ≻ 3 ≻ 4| ≻ 5 ≻ 1 ≻ 7 ≻ 8 ≻ 9
v1 0 ≻ 7 ≻ 2 ≻ 3 ≻ 4| ≻ 5 ≻ 6 ≻ 1 ≻ 8 ≻ 9
v2 0 ≻ 8 ≻ 2 ≻ 3 ≻ 4| ≻ 5 ≻ 6 ≻ 7 ≻ 1 ≻ 9
v3 0 ≻ 9 ≻ 2 ≻ 3 ≻ 4| ≻ 5 ≻ 6 ≻ 7 ≻ 8 ≻ 1

6 × vmaj 9 ≻ 8 ≻ 7 ≻ 6 ≻ 5| ≻ 4 ≻ 3 ≻ 2 ≻ 1 ≻ 0
In the profile above, note that v0, v1, v2, v3 form a 2-cohesive group. In order to satisfy, EJR

one of these voters must approve of two elected alternatives. Similarly, the other 6 voters form a
3-cohesive group and must approve of three elected alternatives. A committee which would not
violate EJR is 3, 4, 5, 6, 7

Dummett’s condition requires that, since 4 voters rank 0 on top, 0 must be in any winning
committee. Thus, it is possible to violate Dummett’s condition without violating EJR. Satisfaction
of EJR does not imply satisfaction of Dummett’s condition.
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Relationship 15. Dummett’s
/

=⇒ EJR.

v0 0 ≻ 6 ≻ 2 ≻ 3 ≻ 4| ≻ 5 ≻ 1 ≻ 7 ≻ 8 ≻ 9
v1 1 ≻ 7 ≻ 2 ≻ 3 ≻ 4| ≻ 5 ≻ 6 ≻ 0 ≻ 8 ≻ 9
v2 2 ≻ 8 ≻ 1 ≻ 3 ≻ 4| ≻ 5 ≻ 6 ≻ 7 ≻ 0 ≻ 9
v3 3 ≻ 9 ≻ 2 ≻ 1 ≻ 4| ≻ 5 ≻ 6 ≻ 7 ≻ 8 ≻ 0

6 × vmaj 9 ≻ 8 ≻ 7 ≻ 6 ≻ 5| ≻ 4 ≻ 3 ≻ 2 ≻ 1 ≻ 0
Consider the above profile. Dummett’s condition requires that the top 3 preferences of the group

of 6 voters must be elected, but does not capture any other group information. A committee elected
by a rule satisfying Dummett’s condition may be {9, 8, 7, 6, 5}.

However, v0, v1, v2, v3 still form a 2-cohesive group – each of the voters approves of {3, 4}. In
order to satisfy EJR, one of these voters must approve of two elected alternatives which is not the
case for the winning committee {9, 8, 7, 6, 5}. Thus, satisfying Dummett’s does not imply satisfaction
of EJR.

Relationship 16. Dummett’s
/

=⇒ Fixed Majority and Fixed Majority
/

=⇒ Dummett’s.

Say that n = 10, l = 2, k = 5 and consider voters with the following preference orders:
v0 0 ≻ 1 ≻ 2 ≻ 3 ≻ 4 ≻ 5 ≻ 6 ≻ 7 ≻ 8 ≻ 9
v1 0 ≻ 1 ≻ 4 ≻ 5 ≻ 6 ≻ 7 ≻ 8 ≻ 9 ≻ 2 ≻ 3
v2 0 ≻ 1 ≻ 6 ≻ 7 ≻ 8 ≻ 9 ≻ 2 ≻ 3 ≻ 4 ≻ 5
v3 0 ≻ 1 ≻ 8 ≻ 9 ≻ 2 ≻ 3 ≻ 4 ≻ 5 ≻ 6 ≻ 7

6 × vmaj 9 ≻ 8 ≻ 7 ≻ 6 ≻ 5 ≻ 4 ≻ 3 ≻ 2 ≻ 1 ≻ 0
As in previous example (D and CW), consider the required winners from each axiom.
Dummett’s requires that – since ln

k = 2·10
5 = 4 voters rank 0 and 1 first – 0 and 1 must be

winners. There is a Fixed Majority which all rank candidates 5 through 9 first. To satisfy FM,
these must be the winners. In this case it is possible to satisfy one of Dummett’s condition or Fixed
Majority, but not both.
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B Results on Real World Data

We gathered from PrefLib (an online repository of real-world preference information) all complete
preference profiles containing 5, 6, or 7 alternatives [35]. Resulting in, respectively, 15, 19, and
22 preference profiles. For each of these preferences, we identified through brute force search the
committees that would violates the fewest and most of our axioms.

As this amount of data is not suitable for a meaningful amount of learning, we measured the
Axiom Violation Rate on this data of networks trained on our Mixed preference distributions. Results
of this evaluation are found in the next section. These results emphasize clearly that the Mixed
preference distribution is mildly informative about the distribution(s) underlying PrefLib data but
that there is also a significant gap between the training and testing distributions in this area. That
is, FNN-all has worse AVR than some rules but also much better AVR than many rules. Complete
results of the PrefLib evaluation for each number of alternatives are listed below.

• 5 Alternatives, Real World Data

• 6 Alternatives, Real World Data

• 7 Alternatives, Real World Data

B.1 5 Alternatives, Real World Data
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NN-all .081 .071 .018 .428 .018 .112 .089 0 .154 0 0 0 .071 .089

Min .004 0 0 0 0 .018 0 0 .036 0 0 0 0 0

Max .471 .286 .357 .929 .554 .679 .304 0 .661 .214 .357 .357 .625 .804

Borda .015 0 0 .054 0 .018 0 0 .054 0 0 0 .036 .036

EPH .038 0 0 .107 0 0 0 0 .179 0 0 0 .107 .107

SNTV .055 0 .089 .339 0 .125 .125 0 .036 0 0 0 0 0

Bloc .038 0 0 .107 0 0 0 0 .179 0 0 0 .107 .107

STV .019 0 .018 .161 0 .036 .036 0 0 0 0 0 0 0

PAV .044 0 0 .143 0 0 0 0 .179 0 0 0 .125 .125

MES .045 0 0 .161 0 0 0 0 .179 0 0 0 .125 .125

CC .136 .071 .125 .446 .018 .161 .196 0 .304 0 0 0 .214 .232

seq-CC .146 .018 .125 .554 .018 .232 .196 0 .339 0 0 0 .196 .214

lex-CC .063 0 .036 .196 0 0 .054 0 .214 0 0 0 .161 .161

Monroe .077 .036 .054 .286 .018 .071 .071 0 .196 0 0 0 .125 .143

Greedy M. .059 0 .018 .232 0 .018 .036 0 .196 0 0 0 .125 .143

MAV .162 .125 .143 .607 .054 .179 .250 0 .268 0 0 0 .196 .286

RSD .104 .089 .036 .321 .018 0 .107 0 .214 .054 .054 .054 .161 .250

Random .255 .196 .214 .732 .107 .357 .286 0 .464 .071 .089 .089 .304 .411

Table 4: Average Axiom Violation Rate for 5 alternatives and 1 ≤ k < 5 winners across Real World Data
preferences.
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Borda 0 – – – – – – – – – – – – –

EPH .223 0 – – – – – – – – – – – –

SNTV .304 .375 0 – – – – – – – – – – –

Bloc .223 0 .375 0 – – – – – – – – – –

STV .187 .304 .241 .304 0 – – – – – – – – –

PAV .214 .036 .384 .036 .321 0 – – – – – – – –

MES .196 .116 .330 .116 .304 .089 0 – – – – – – –

CC .411 .304 .482 .304 .446 .304 .393 0 – – – – – –

seq-CC .455 .491 .348 .491 .491 .473 .402 .616 0 – – – – –

lex-CC .241 .071 .393 .071 .330 .036 .125 .277 .491 0 – – – –

Monroe .330 .205 .393 .205 .339 .205 .295 .107 .545 .205 0 – – –

Greedy M. .268 .214 .304 .214 .330 .205 .152 .429 .304 .223 .321 0 – –

MAV .643 .562 .714 .562 .616 .545 .616 .330 .848 .518 .411 .670 0 –

RSD .366 .348 .437 .348 .393 .339 .304 .500 .545 .348 .420 .339 .616 0

Random .750 .750 .705 .750 .741 .768 .732 .750 .705 .777 .768 .750 .723 .777

Min .241 .223 .411 .223 .223 .232 .286 .348 .571 .259 .268 .339 .473 .402

Max .946 .938 .955 .938 .973 .955 .955 .812 .866 .938 .866 .929 .714 .893

NN-all .409 .481 .484 .481 .449 .481 .445 .659 .527 .499 .561 .472 .748 .517

Table 5: Difference between rules for 5 alternatives with 1 ≤ k < 5 on Real-World preferences.

Figure 6: Axiom violation rate for each axiom on Real World Data preferences with 5 alternatives.
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Figure 7: Axiom violation rate for each rule on Real World Data preferences with 5 alternatives.
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B.2 6 Alternatives, Real World Data

Method M
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NN-all .117 .052 .033 .476 .056 .101 .067 0 .242 .019 .030 .030 .180 .241

Min .007 0 0 .022 0 .022 0 0 .011 0 0 0 0 .033

Max .385 .222 .222 .744 .511 .589 .144 .011 .611 .167 .211 .222 .556 .789

Borda .023 .011 0 .044 0 .033 .011 0 .089 0 0 0 .056 .056

EPH .050 0 0 .222 0 0 0 0 .178 0 0 0 .122 .133

SNTV .030 0 .011 .311 0 .044 .022 0 0 0 0 0 0 0

Bloc .050 0 0 .200 0 0 0 0 .178 0 0 0 .122 .144

STV .019 0 0 .189 0 .056 0 0 0 0 0 0 0 0

PAV .056 0 0 .256 0 0 0 0 .189 0 0 0 .144 .144

MES .056 0 0 .256 0 0 0 0 .178 0 0 0 .144 .144

CC .159 .056 .122 .511 .056 .167 .100 .011 .400 0 .022 .033 .256 .333

seq-CC .103 .033 .022 .422 .033 .067 .056 0 .267 0 .011 .011 .200 .211

lex-CC .072 0 0 .356 0 0 .022 0 .233 0 0 0 .156 .167

Monroe .117 .033 .044 .467 .033 .100 .067 0 .333 0 0 0 .189 .256

Greedy M. .064 .011 0 .333 .011 0 .022 0 .178 0 0 0 .133 .144

MAV .180 .078 .156 .589 .089 .244 .111 0 .378 .022 .033 .033 .222 .389

RSD .110 .078 .011 .522 .022 0 .078 0 .244 .011 .022 .022 .156 .267

Random .192 .122 .156 .622 .100 .256 .133 .011 .367 .022 .067 .067 .256 .322

Table 6: Average Axiom Violation Rate for 6 alternatives and 1 ≤ k < 6 winners across Real World Data
preferences.
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Borda 0 – – – – – – – – – – – – –

EPH .306 0 – – – – – – – – – – – –

SNTV .415 .428 0 – – – – – – – – – – –

Bloc .300 .013 .431 0 – – – – – – – – – –

STV .293 .363 .185 .369 0 – – – – – – – – –

PAV .326 .035 .428 .044 .365 0 – – – – – – – –

MES .313 .165 .335 .174 .350 .135 0 – – – – – – –

CC .565 .467 .646 .476 .578 .444 .533 0 – – – – – –

seq-CC .476 .443 .322 .448 .415 .422 .317 .628 0 – – – – –

lex-CC .389 .107 .474 .117 .406 .072 .181 .424 .426 0 – – – –

Monroe .502 .400 .583 .406 .520 .381 .470 .080 .596 .378 0 – – –

Greedy M. .387 .344 .319 .354 .352 .322 .217 .556 .320 .331 .507 0 – –

MAV .687 .689 .757 .693 .717 .672 .683 .337 .791 .654 .350 .719 0 –

RSD .602 .580 .607 .580 .589 .570 .602 .661 .676 .563 .611 .591 .689 0

Random .696 .704 .739 .694 .722 .704 .715 .713 .676 .704 .696 .707 .722 .687

Min .220 .348 .380 .346 .257 .361 .385 .543 .517 .404 .476 .435 .596 .594

Max .891 .900 .920 .900 .894 .889 .896 .706 .876 .881 .746 .898 .567 .819

NN-all .489 .583 .484 .579 .523 .580 .534 .725 .428 .593 .702 .535 .804 .618

Table 7: Difference between rules for 6 alternatives with 1 ≤ k < 6 on Real-World preferences.

Figure 8: Axiom violation rate for each axiom on Real World Data preferences with 6 alternatives.
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Figure 9: Axiom violation rate for each rule on Real World Data preferences with 6 alternatives.
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B.3 7 Alternatives, Real World Data

Method M
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NN-all .102 .016 .039 .457 .015 .108 .041 0 .200 .035 .042 .046 .110 .223

Min .010 0 0 .068 0 .008 0 0 .038 0 0 0 0 .015

Max .534 .409 .318 .909 .712 .750 .235 .061 .750 .288 .432 .462 .697 .917

Borda .030 .008 0 .136 0 0 .015 0 .121 0 0 0 .045 .068

EPH .033 0 0 .152 0 0 0 0 .136 0 0 0 .061 .083

SNTV .086 0 .061 .598 0 .167 .129 .023 .076 0 .030 .030 0 0

Bloc .033 0 0 .144 0 0 0 0 .129 0 0 0 .061 .091

STV .027 0 .015 .258 0 .023 .030 0 .023 0 0 0 0 0

PAV .034 0 0 .152 0 0 0 0 .144 0 0 0 .061 .083

MES .046 0 0 .258 0 0 0 0 .159 0 0 0 .076 .106

CC .177 .053 .174 .674 .008 .318 .159 .038 .348 0 .091 .098 .159 .182

seq-CC .184 .038 .068 .712 .015 .242 .152 .030 .417 0 .068 .076 .258 .318

lex-CC .054 0 0 .326 0 0 .023 0 .182 0 0 0 .076 .098

Monroe .097 .008 .068 .545 0 .152 .076 0 .235 0 0 0 .076 .106

Greedy M. .088 .008 .015 .477 .008 .015 .061 0 .227 0 0 0 .144 .189

MAV .149 .068 .106 .712 .038 .235 .167 0 .250 0 .023 .023 .114 .205

RSD .091 .030 .030 .523 0 0 .015 0 .220 .008 .015 .015 .144 .189

Random .303 .197 .152 .841 .053 .523 .227 .061 .500 .106 .174 .220 .371 .515

Table 8: Average Axiom Violation Rate for 7 alternatives and 1 ≤ k < 7 winners across Real World Data
preferences.
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Borda 0 – – – – – – – – – – – – –

EPH .150 0 – – – – – – – – – – – –

SNTV .422 .409 0 – – – – – – – – – – –

Bloc .154 .008 .413 0 – – – – – – – – – –

STV .235 .254 .333 .254 0 – – – – – – – – –

PAV .152 .029 .419 .033 .256 0 – – – – – – – –

MES .203 .129 .365 .133 .321 .121 0 – – – – – – –

CC .527 .455 .581 .458 .496 .449 .520 0 – – – – – –

seq-CC .520 .491 .367 .495 .545 .475 .409 .722 0 – – – – –

lex-CC .220 .119 .426 .122 .295 .092 .145 .431 .472 0 – – – –

Monroe .433 .352 .514 .356 .396 .342 .415 .133 .628 .328 0 – – –

Greedy M. .345 .298 .376 .306 .369 .293 .212 .597 .374 .306 .489 0 – –

MAV .539 .525 .652 .525 .566 .520 .557 .312 .770 .497 .332 .646 0 –

RSD .400 .367 .515 .367 .396 .376 .393 .556 .571 .390 .465 .461 .556 0

Random .758 .732 .717 .732 .721 .739 .739 .773 .725 .739 .768 .753 .739 .725

Min .181 .199 .427 .196 .172 .198 .265 .473 .586 .253 .383 .400 .508 .400

Max .970 .975 .914 .971 .934 .972 .977 .778 .848 .944 .854 .937 .789 .900

NN-all .427 .440 .507 .436 .444 .440 .453 .693 .492 .447 .617 .465 .656 .509

Table 9: Difference between rules for 7 alternatives with 1 ≤ k < 7 on Real-World preferences.

Figure 10: Axiom violation rate for each axiom on Real World Data preferences with 7 alternatives.
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Figure 11: Axiom violation rate for each rule on Real World Data preferences with 7 alternatives.
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C Additional Experimental Results

This section includes some additional results for our experiments: the figures matching the body of
our paper corresponding to m = 5 and m = 6 alternatives, as well as exact numerical results for the
optimal positional scoring rule experiment.

C.1 Optimized Positional Scoring Rules

Table 10 shows results of annealing for 1000 steps using 2000 profiles sampled from the Mixed
distribution, for each axiom set. Each vector is then evaluated on a 25000 profiles also sampled from
the Mixed distribution. The score vector resulting from annealing is shown in the final column.

All Axioms

k FBorda FOpt Annealed Vector

1 0.010 0.008 (1, 0.69, 0.51, 0.30, 0.08, 0.05, 0)
2 0.011 0.011 (1, 0.82, 0.50, 0.45, 0.10, 0.01, 0)
3 0.022 0.018 (1, 0.77, 0.71, 0.24, 0.16, 0.08, 0)
4 0.030 0.025 (1, 0.74, 0.51, 0.46, 0.12, 0.09, 0)
5 0.034 0.028 (1, 0.50, 0.44, 0.32, 0.25, 0.05, 0)
6 0.025 0.022 (1, 0.54, 0.42, 0.42, 0.37, 0.30, 0)

Reduced Axioms

k FBorda FOpt Annealed Vector
1 0.019 0.016 (1, 0.70, 0.42, 0.36, 0.19, 0.05, 0)
2 0.021 0.018 (1, 0.87, 0.54, 0.41, 0.26, 0.01, 0)
3 0.036 0.032 (1, 0.85, 0.70, 0.38, 0.13, 0.02, 0)
4 0.044 0.043 (1, 0.63, 0.60, 0.51, 0.22, 0.05, 0)
5 0.042 0.042 (1, 0.55, 0.47, 0.41, 0.38, 0.08, 0)
6 0.030 0.027 (1, 0.71, 0.50, 0.48, 0.43, 0.31, 0)

Table 10: Score vector resulting from annealing and the axiom violation rate across a test set of 25000
profiles for m = 7 alternatives on both axiom sets by FBorda and the positional scoring rule found via
simulated annealing, FOpt.

C.2 Results for 5 Alternatives
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Figure 12: Axiom violation rates for each rule under each individual preference distribution for m = 5. In
all cases, FNN-all has AVR lower than, or similar to, other rules.
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NN-all .006 .000 .000 .001 .000 .002 .000 0 .027 .000 .000 .000 .017 .025

NN-root .022 .002 .020 .131 .013 .017 .023 0 .030 .000 .000 .000 .021 .028

Min .003 0 .000 .013 .000 .000 .000 0 .009 0 0 0 .004 .012

Max .430 .218 .425 .959 .753 .458 .268 .082 .478 .196 .324 .324 .443 .665

Borda .012 .002 .007 .096 0 .002 .016 0 .015 .000 .000 .000 .009 .011

EPH .025 .000 .003 .205 .005 0 .001 0 .044 .000 .000 .000 .030 .038

SNTV .078 0 .109 .484 .016 .132 .111 .038 .044 .000 .041 .041 0 .003

Bloc .024 .000 .003 .197 .005 0 0 0 .043 .000 .000 .000 .030 .040

STV .034 0 .042 .298 .005 .053 .039 0 0 .000 .000 .000 0 .000

PAV .029 .001 .003 .242 .005 0 .006 0 .046 0 0 0 .033 .036

MES .031 .001 .004 .256 .005 .001 .009 0 .049 0 0 0 .035 .037

CC .164 .054 .163 .660 .069 .217 .179 .057 .230 0 .071 .071 .166 .196

seq-CC .148 .046 .156 .627 .044 .182 .175 .057 .208 0 .059 .059 .145 .167

lex-CC .047 .010 .013 .362 .005 0 .033 0 .072 0 0 0 .055 .057

Monroe .098 .016 .090 .525 .048 .125 .086 0 .136 0 .001 .001 .111 .130

Greedy M. .045 .002 .026 .348 .006 .006 .033 0 .063 0 0 0 .046 .051

MAV .134 .054 .135 .700 .096 .128 .150 0 .147 .013 .015 .015 .118 .176

RSD .089 .023 .085 .536 .040 0 .070 0 .095 .023 .024 .024 .074 .161

Random .218 .109 .215 .804 .127 .285 .225 .071 .250 .050 .111 .112 .191 .287

Table 11: Average Axiom Violation Rate for 5 alternatives and 1 ≤ k < 5 winners across all preferences.
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Figure 13: Violation rates of each axiom for every preference distribution, averaged over all rules. This
shows trends common across all rules in the relationships between axioms and preference distributions.
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Borda 0 – – – – – – – – – – – – –

EPH .227 0 – – – – – – – – – – – –

SNTV .394 .355 0 – – – – – – – – – – –

Bloc .229 .011 .353 0 – – – – – – – – – –

STV .245 .303 .261 .303 0 – – – – – – – – –

PAV .235 .045 .365 .053 .309 0 – – – – – – – –

MES .239 .096 .344 .103 .315 .066 0 – – – – – – –

CC .549 .429 .524 .432 .521 .405 .439 0 – – – – – –

seq-CC .507 .424 .409 .429 .505 .405 .367 .586 0 – – – – –

lex-CC .293 .119 .397 .125 .350 .079 .116 .367 .396 0 – – – –

Monroe .452 .329 .453 .332 .427 .310 .345 .124 .541 .318 0 – – –

Greedy M. .301 .195 .363 .201 .348 .171 .140 .444 .343 .194 .365 0 – –

MAV .594 .576 .667 .577 .595 .563 .582 .376 .743 .528 .352 .594 0 –

RSD .472 .450 .553 .450 .499 .453 .454 .614 .593 .471 .542 .467 .610 0

Random .700 .700 .700 .700 .700 .700 .700 .700 .700 .700 .700 .700 .700 .700

Min .125 .211 .407 .207 .249 .230 .246 .521 .525 .289 .424 .310 .562 .470

Max .964 .948 .897 .951 .936 .935 .930 .808 .785 .910 .867 .911 .821 .852

NN-all .125 .201 .413 .197 .256 .221 .239 .522 .524 .281 .425 .306 .563 .468

NN-root .248 .286 .443 .285 .314 .295 .309 .480 .555 .333 .348 .342 .453 .456

Table 12: Difference between rules for 5 alternatives with 1 ≤ k < 5 averaged over all preference distribu-
tions.
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C.3 Results for 6 Alternatives

Figure 14: Axiom violation rates for each rule under each individual preference distribution for m = 6. In
all cases, FNN-all has AVR lower than, or similar to, other rules.

39



Method M
e
a
n

M
a
j
W

M
a
j
L

C
o
n
d

W

C
o
n
d

L

P
a
re
to

F
M

a
j

U
n
a
n
im

it
y

D
u
m
m
e
tt
’s

J
R

E
J
R

C
o
re

S
.
C
o
a
li
ti
o
n
s

S
ta

b
il
it
y

NN-all .011 .000 .000 .006 .000 .003 .000 0 .042 .000 .000 .000 .032 .055

NN-root .030 .001 .024 .180 .012 .029 .022 .000 .039 .000 .000 .000 .033 .056

Min .005 0 .000 .024 0 .001 .000 0 .009 0 0 0 .006 .031

Max .431 .136 .375 .940 .688 .553 .203 .078 .520 .242 .311 .327 .487 .742

Borda .016 .002 .006 .113 0 .003 .013 0 .027 .000 .000 .000 .019 .029

EPH .032 .000 .002 .234 .003 .000 .001 0 .060 .000 .000 .000 .049 .067

SNTV .090 0 .103 .559 .011 .183 .108 .045 .054 .000 .048 .049 0 .007

Bloc .031 .000 .001 .223 .003 0 0 0 .059 .000 .000 .000 .048 .073

STV .041 0 .039 .373 .002 .085 .032 0 0 .000 .000 .000 0 .000

PAV .035 .001 .002 .268 .003 0 .005 0 .064 0 0 0 .052 .064

MES .039 .001 .003 .301 .003 .002 .008 0 .071 0 0 0 .057 .066

CC .179 .036 .154 .719 .041 .291 .156 .060 .264 0 .077 .080 .199 .246

seq-CC .167 .032 .148 .698 .032 .242 .155 .060 .248 0 .072 .072 .184 .224

lex-CC .054 .006 .009 .402 .003 0 .027 0 .093 0 0 0 .076 .085

Monroe .115 .007 .084 .599 .035 .188 .072 0 .174 0 .003 .004 .149 .181

Greedy M. .054 .002 .021 .400 .004 .010 .026 0 .086 0 0 0 .070 .086

MAV .148 .028 .128 .732 .063 .223 .104 0 .178 .020 .026 .026 .149 .250

RSD .096 .010 .068 .571 .024 0 .046 0 .119 .023 .024 .025 .100 .234

Random .226 .068 .189 .833 .084 .354 .180 .071 .285 .048 .119 .123 .222 .359

Table 13: Average Axiom Violation Rate for 6 alternatives and 1 ≤ k < 6 winners across all preferences.
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Borda 0 – – – – – – – – – – – – –

EPH .238 0 – – – – – – – – – – – –

SNTV .427 .385 0 – – – – – – – – – – –

Bloc .239 .016 .382 0 – – – – – – – – – –

STV .278 .330 .280 .330 0 – – – – – – – – –

PAV .243 .047 .394 .058 .334 0 – – – – – – – –

MES .255 .107 .376 .117 .342 .076 0 – – – – – – –

CC .569 .449 .548 .453 .542 .429 .460 0 – – – – – –

seq-CC .538 .453 .437 .460 .533 .435 .399 .608 0 – – – – –

lex-CC .301 .126 .421 .135 .371 .085 .115 .397 .424 0 – – – –

Monroe .484 .363 .490 .366 .460 .343 .375 .111 .568 .344 0 – – –

Greedy M. .318 .210 .394 .217 .374 .187 .155 .470 .372 .202 .397 0 – –

MAV .602 .589 .673 .588 .604 .585 .600 .352 .781 .567 .350 .619 0 –

RSD .476 .454 .565 .453 .508 .456 .458 .624 .608 .472 .557 .472 .614 0

Random .700 .700 .700 .700 .700 .700 .700 .700 .700 .700 .700 .700 .700 .700

Min .142 .236 .439 .230 .283 .252 .272 .542 .560 .310 .457 .335 .564 .476

Max .941 .933 .870 .937 .914 .924 .916 .802 .762 .900 .855 .896 .810 .846

NN-all .137 .221 .445 .215 .291 .238 .260 .544 .557 .298 .459 .327 .564 .472

NN-root .327 .347 .499 .344 .377 .353 .367 .523 .622 .390 .402 .402 .446 .472

Table 14: Difference between rules for 6 alternatives with 1 ≤ k < 6 averaged over all preference distribu-
tions.
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Figure 15: Violation rates of each axiom for every preference distribution, averaged over all rules. This
shows trends common across all rules in the relationships between axioms and preference distributions.
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