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Abstract

A primary goal of online deliberation platforms is
to identify ideas that are broadly agreeable to a
community of users through their expressed pref-
erences. Yet, consensus elicitation should ide-
ally extend beyond the specific statements pro-
vided by users and should incorporate the relative
salience of particular topics. We address this is-
sue by modelling consensus as an interval in a one-
dimensional opinion space derived from potentially
high-dimensional data via embedding and dimen-
sionality reduction. We define an objective that
maximizes expected agreement within a hypothesis
interval where the expectation is over an underlying
distribution of issues, implicitly taking into account
their salience. We propose an efficient Empirical
Risk Minimization (ERM) algorithm and establish
PAC-learning guarantees. Our initial experiments
demonstrate the performance of our algorithm and
examine more efficient approaches to identifying
optimal consensus regions. We find that through
selectively querying users on an existing sample of
statements, we can reduce the number of queries
needed to a practical number.

1 Introduction
Identifying regions of maximal approval, or common ground,
within an opinion space is a fundamental task for understand-
ing collective sentiment and informing group decisions. This
is particularly relevant for text-based online deliberation plat-
forms such as Polis1 [Small et al., 2021] and Remesh2, which
aim to distill areas of agreement from complex social discus-
sions. In some approaches, like those used by Polis, opinions
are represented as points in a metric space derived through
embedding and dimensionality reduction where proximity
signifies similarity. This spatial approach to opinion represen-
tation has roots in both political theory [Merrill and Grofman,
1999] and social choice [Bulteau et al., 2021] and allows for
a geometric interpretation of consensus.

1https://pol.is
2https://www.remesh.ai/

Platforms for online deliberation typically gather opinions
of participants through their approval or disapproval of spe-
cific statements. While a statement represents a single point
in the broader opinion space a set of broadly agreeable state-
ments can be naturally viewed as a contiguous region of re-
lated viewpoints. Separately, the salience of the issues is crit-
ical for meaningful consensus. For instance, in a discussion
about AI development, a statement like “Historically most
progress on AI has been made in academia” might receive
universal approval. However, this may be an opinion that
all users take for granted, and thus may not be at the core
of the debate. In contrast, opinions on whether AI models
should be open-source, open-weights, or closed-source are
discussed and debated more broadly. If an opinion in this “in-
tellectual property” region is also highly approved, it might
represent a more meaningful consensus statement. Thus, an
ideal consensus region should reflect high approval on salient
segments of the discussion, rather than primarily including
points receiving widespread approval, which are less relevant.

Our goal is to query participants about their approval pref-
erences in order to find a region of responses that maxi-
mizes approval. In this paper, we assume that preferences are
single-peaked along one dimension. This one-dimensional
(1D) space can be thought of as a relevant dimension de-
rived from higher-dimensional opinion space (e.g., via em-
bedding and dimensionality reduction). We focus on the pas-
sive learning setting: given a sample of issues (points) drawn
from an underlying distribution and labelled by voters, how
do we best identify the interval representing maximum con-
sensus? We formalize this problem, provide an efficient algo-
rithm for finding an empirical solution, and derive PAC-style
theoretical guarantees on its performance. This work serves
as a foundation for more complex scenarios, including active
learning where one might query voters strategically.3

The main contributions of this paper are:

• A formal problem definition for passive 1D interval-
based consensus finding, incorporating the notion of is-
sue salience through an underlying distribution.

• An efficient Empirical Risk Minimization (ERM) algo-
rithm for this problem.

3In the Polis context, this is referred to as opinion or comment
routing [Small et al., 2021].

https://pol.is
https://www.remesh.ai/


Figure 1: A conceptual representation of approval intervals for dif-
ferent users along a 1D opinion spectrum.

• PAC learning analysis, including the pseudo-dimension
of the function class and sample complexity bounds.

• Experimental validation and exploration of query strate-
gies that make learning optimal regions dramatically
more efficient.

1.1 A Concrete Example
To illustrate our one-dimensional model, consider the ongo-
ing discussion surrounding artificial intelligence (AI) safety.
This debate encompasses a spectrum of views, from strong
advocacy for rapid, unhindered AI development to calls for
stringent regulation or even moratoria due to safety con-
cerns4. Such opinions, though multifaceted, can often be
projected onto a principal axis representing, for example, a
“progress vs. precaution” spectrum. Along this dimension,
individuals may have an interval of acceptable stances, as de-
picted by the green regions in Figure 1. Further, the distribu-
tion of opinions (depicted in yellow) might have more mass
around moderate positions as a larger number of moderate
opinions were put forward by users.

Specific stances within this AI safety opinion space might
be mapped to points along this dimension. For example:

A: AI development should proceed unhindered by regula-
tion, focusing on maximizing progress.

B: AI safety should primarily be governed by industry self-
regulation and market forces.

C: Government regulation of AI development is important
for ensuring public safety and ethical alignment.

D: Development of AI capabilities beyond a certain thresh-
old (e.g., superhuman intelligence) should be perma-
nently banned.

Our framework aims to identify an interval (depicted in blue)
on this 1D spectrum that best represents the overall consen-
sus, considering both the approval patterns of individuals and
the relative salience (frequency) of different positions.

4https://futureoflife.org/open-letter/pause-giant-ai-experiments/

2 Problem Definition
We address a learning problem in one dimension (1D). We
are provided with n initial intervals, denoted Ic ⊂ R for
c = 1, . . . , n. These can be conceptualized as representing
the approval region of n distinct voters over a continuous
space of issues x ∈ R. The primary goal is to determine
a single hypothesis interval Î ⊂ R that best summarizes or
agrees with these voter intervals, according to an objective
function defined below. This is considered within a passive
learning framework where issues are sampled i.i.d. from an
underlying, possibly unknown, distribution P (x)5.
Definition 2.1 (Individual Label Function). Let Ic ⊂ R be
an individual voter interval. The label function Lc(x) for an
issue x ∈ R with respect to interval Ic is defined as:

Lc(x) = 2 · 1 {x ∈ Ic} − 1.

Thus, Lc(x) = +1 if x ∈ Ic (the voter approves the issue)
and Lc(x) = −1 if x /∈ Ic (the voter disapproves or does not
endorse the issue within this interval).
Definition 2.2 (Combined Label Function). Let I1, . . . , In ⊂
R be n known voter intervals. The combined label function
l(x) for any issue x ∈ R is the sum of the individual labels:

l(x) =

n∑
c=1

Lc(x) = 2

n∑
c=1

1 {x ∈ Ic} − n. (1)

So, if an issue x is approved by exactly k of these n vot-
ers (i.e., x falls into k of the Ic intervals), then l(x) =
2k − n. The function l(x) is an integer taking values in
{−n,−n + 2, . . . , n − 2, n}. This function l(x) represents
the net agreement among the n voters regarding issue x;
a positive value indicates that more voters approve x than
disapprove, and a negative value indicates the opposite. If
ϕ(x) = (

∑n
c=1 1 {x ∈ Ic})/n is the fraction of voters ap-

proving x, then l(x) = n(2ϕ(x)− 1).

2.1 Objective Function: Maximizing Net
Agreement

Our goal is to find a hypothesis interval Î ∈ H, where
H = {[a, b] : a, b ∈ R, a ≤ b} is the class of all closed
intervals, that represents the region of maximum consensus.
We quantify consensus by the total net agreement accumu-
lated within the chosen interval, weighted by the probability
of issues appearing there.

Consider a candidate interval Î . For each voter c, we want
issues within Î to align with their preference Ic. That is, we
prefer x to be in both Î and Ic (contributing +1 to Lc(x))
or outside both, and we dislike x being in Î but outside Ic
(contributing −1 to Lc(x)). Summing over all voters, the
quantity l(x) =

∑
c Lc(x) reflects the overall net agreement

at point x. A desirable consensus interval Î should contain
issues x where l(x) is predominantly positive. This intuition
leads to maximizing the expected value of l(x) for issues x

that fall within the hypothesis interval Î .

5For example, in the case of Pol.is, this underlying distribution is
generated by the participants of the deliberation writing statements.



Definition 2.3 (True Objective Function). Given the com-
bined label function l(x) and the underlying issue distribution
P (x), the quality of a hypothesis interval I ∈ H is measured
by the objective function Φ(I):

Φ(I) = Ex∼P [l(x)1 {x ∈ I}] =
∫
I

l(x)dP (x). (2)

The goal is to find an interval I∗ = argmaxI∈H Φ(I).

This objective Φ(I) directly calculates the expected con-
tribution to the net agreement score from issues within the
interval I . One can also think of maximizing Φ(I) as equiva-
lent to maximizing the average agreement between the vot-
ers’ labels Lc(x) and the label assigned by the interval I ,
LI(x) = 2·1 {x ∈ I}−1, specifically 1

n

∑
c E[Lc(x)LI(x)],

up to scaling and additive constants.
In practice, the true distribution P (x) is unknown. We are

instead given a sample of m issues S = {x1, . . . , xm} drawn
i.i.d. from P (x). We therefore use an empirical version of
the objective.

Definition 2.4 (Empirical Objective Function). Given a sam-
ple S = {x1, . . . , xm} drawn i.i.d. from P (x), the empirical
objective function Φ̂S(I) for an interval I ∈ H is the sample
average of the net agreement within the interval:

Φ̂S(I) =
1

m

m∑
i=1

l(xi)1 {xi ∈ I} . (3)

The Empirical Risk Minimization (ERM) principle seeks the
interval ÎERM = argmaxI∈H Φ̂S(I).

Observe that maximizing Φ̂S(I) is equivalent to maximiz-
ing the unnormalized sum

∑m
i=1 l(xi)1 {xi ∈ I}.

3 Algorithm for Passive Interval Selection
The function l(x) is a step function, with its value chang-
ing only at the endpoints ac, bc of the given voter intervals
Ic. The problem of maximizing Φ̂S(Î) is an Empirical Risk
Minimization (ERM) task.

Proposition 3.1. The interval ÎERM that maximizes the em-
pirical sum

∑
xi∈Î l(xi) over m sample issues x1, . . . , xm

(assuming m ≥ 1) can be chosen such that its endpoints
are sample issues. That is, ÎERM = [x(j), x(k)] for some
1 ≤ j ≤ k ≤ m, where x(1) ≤ x(2) ≤ · · · ≤ x(m) are the
sorted sample issues.

Proof. Let S(Î) =
∑m

i=1 l(xi)1
{
xi ∈ Î

}
. Consider an in-

terval I ′ = [a, b] that maximizes this sum. The value of S(I ′)
depends only on the set of sample issues contained within
I ′. If I ′ contains no sample issues, S(I ′) = 0. If I ′ con-
tains sample issues, let x(j′) be the smallest sample issue in
I ′ and x(k′) be the largest sample issue in I ′. The interval
[x(j′), x(k′)] contains exactly the same set of sample issues as
I ′. Therefore, S([x(j′), x(k′)]) = S(I ′). Thus, an optimal in-
terval whose endpoints are from the set of sample issues can
always be constructed.

Algorithm 1 ERM for 1D Interval Selection (assuming m ≥
1)

1: Input: Sample issues x1, . . . , xm; voter intervals
I1, . . . , In.

2: Output: ERM interval ÎERM = [x(j∗), x(k∗)].
3: For each sample issue xs, compute its score l(xs) =

2
∑n

c=1 1 {xs ∈ Ic} − n.
4: Sort the sample issues to get x(1) ≤ x(2) ≤ · · · ≤ x(m).

Let h(i) = l(x(i)).
5: Initialize Smax ← −∞.
6: Initialize Scurrent ← 0.
7: Initialize j∗ ← 1, k∗ ← 1 (placeholders, assuming m ≥

1).
8: Initialize jcand ← 1.
9: for i = 1 to m do

10: Scurrent ← Scurrent + h(i)

11: if Scurrent > Smax then
12: Smax ← Scurrent

13: j∗ ← jcand
14: k∗ ← i
15: end if
16: if Scurrent < 0 then
17: Scurrent ← 0
18: jcand ← i+ 1
19: end if
20: end for
21: if Smax = −∞ and m ≥ 1 then ▷ All h(i) are

negative or m = 0 case not fully handled by above loop
if no positive subarray. If all h(i) are negative, find max
h(i).

22: Smax ← h(1); j∗ ← 1; k∗ ← 1;
23: for i = 2 to m do
24: if h(i) > Smax then
25: Smax ← h(i); j∗ ← i; k∗ ← i;
26: end if
27: end for
28: end if
29: ÎERM = [x(j∗), x(k∗)].
30: return ÎERM .

Proposition 3.1 implies that the problem reduces to find-
ing indices j∗ and k∗ (with 1 ≤ j∗ ≤ k∗ ≤ m) that maxi-
mize the sum Sj,k =

∑k
i=j h(i), where h(i) = l(x(i)) is the

combined label of the i-th sorted sample issue x(i). This is
the Maximum Subarray Sum problem on the array of scores
H = [h(1), . . . , h(m)].

Algorithm 1 details this process. The Maximum Subarray
Sum component (lines 5-15) uses Kadane’s algorithm [Bent-
ley, 1984]. The standard Kadane’s algorithm finds the max-
imum sum; if all elements are negative, it might return 0
(for an empty subarray) or the largest single negative element
depending on initialization. The version presented, initializ-
ing Smax to −∞, is designed to find the interval [x(j), x(k)]

maximizing
∑k

i=j l(x(i)), even if this sum is negative. If all
l(xi) are negative, it will find the x(i) with the least nega-
tive l(x(i)). A slight modification (lines 16-21) ensures that



if all subarray sums are negative (including single elements),
it correctly picks the one with the largest (least negative) sum,
corresponding to a single point interval.

3.1 Algorithmic Complexity of ERM
The ERM interval ÎERM can be found efficiently. The pri-
mary computational steps are:

1. Computing the scores l(xi) for all m sample points.
Naively, this takes O(nm) time by checking each point
against each of the n voter intervals Ic.

2. Sorting the sample points xi to obtain x(i) and their as-
sociated scores h(i). This takes O(m logm) time.

3. Applying Kadane’s algorithm (Algorithm 1, lines 5-15)
to the m scores h(i), which runs in O(m) time.

The total time complexity using this naive score computa-
tion is O(nm + m logm). Alternatively, a sweep-line al-
gorithm can be used to compute all l(xi) values more effi-
ciently. This involves creating a sorted list of all 2n end-
points of the given intervals Ic and all m sample points xi.
The sweep processes these O(n + m) points in order. As
an endpoint of an Ic is crossed, the count of active intervals
(used to determine l(x) for points in that segment) is updated.
When a sample point xi is encountered, its l(xi) value is
computed based on the current count of intervals it falls into.
This approach takes O((n + m) log(n + m)) time for both
sorting the critical points and performing the sweep to as-
sign scores. If the sample points xi are already sorted by this
process, the subsequent Kadane’s algorithm step takes O(m).
Thus, the total complexity using the sweep-line method is
O((n+m) log(n+m)).

4 Theoretical Analysis
We establish Probably Approximately Correct (PAC) learn-
ing guarantees for the ERM approach. Let H be the hypoth-
esis class of all intervals [a, b] ⊂ R. The true objective for
R ∈ H is Φ(R) = Ex∼P [l(x)1 {x ∈ R}], and the empirical
objective is Φ̂S(R) = 1

m

∑m
i=1 l(xi)1 {xi ∈ R}. To analyze

the uniform convergence of Φ̂S(R) to Φ(R), we consider the
properties of the function class gR(x) = l(x)1 {x ∈ R}. The
complexity of uniform convergence depends on the function
class G = {gR(x) : R ∈ H}. The functions gR(x) ∈ G are
bounded by M0 = maxx |l(x)| = n.

Lemma 4.1. The pseudo-dimension of the function class G =
{gR(x) = l(x)1 {x ∈ R} : R is an interval in R}, denoted
Pdim(G), is 2, provided l(x) is not identically zero on R.

Proof. (Sketch) To show Pdim(G) ≥ 2: Choose two
points x1 < x2 where l(x1), l(x2) ̸= 0. Appropri-
ate thresholds r1, r2 can be chosen such that the out-
comes 1{l(xj)1 {xj ∈ R} > rj} depend on 1 {xj ∈ R}
or 1 − 1 {xj ∈ R}. Since intervals can shatter two points
for indicators (VCdim = 2), G can pseudo-shatter two
points. To show Pdim(G) ≤ 2: For any three points
x1 < x2 < x3 and any thresholds r1, r2, r3, the pattern
of (1 {x1 ∈ R} ,1 {x2 ∈ R} ,1 {x3 ∈ R}) cannot achieve
(1, 0, 1). This limitation on indicator patterns restricts the

achievable patterns for (b1(R), b2(R), b3(R)), preventing
pseudo-shattering of 3 points. (Detailed proof in the ap-
pendix).

Theorem 4.2 (Sample Complexity). Let Pdim(G) = dPD =
2 and M0 = n. For any ϵ > 0 and δ ∈ (0, 1), if the number
of i.i.d. samples m satisfies

m ≥ 32M2
0

ϵ2

(
dPD ln

(
32eM0

ϵ

)
+ ln(4e(dPD + 1)) + ln

(
1

δ

))
,

(4)

then with probability at least 1 − δ, supR∈H |Φ(R) −
Φ̂S(R)| ≤ ϵ. This implies that the ERM hypothesis
R̂ERM satisfies Φ(R̂ERM ) ≥ Φ(R∗) − 2ϵ, where R∗ =
argmaxR∈H Φ(R). For dPD = 2,

m ≥ 32n2

ϵ2

(
2 ln

(
32en

ϵ

)
+ ln(12e) + ln

(
1

δ

))
.

Proof. (Sketch) The proof of the sample complexity (The-
orem 4.2) relies on standard uniform convergence argu-
ments. First, the pseudo-dimension of the function class
G = {gR(x) = l(x)1 {x ∈ R}} is determined to be 2, as
established in Lemma 4.1. A uniform convergence bound is
then applied. This bound, which is based on methods detailed
in Anthony and Bartlett (2009, Ch. 17) [Anthony and Bartlett,
2009], relates the probability of the maximum deviation be-
tween the true expectation Φ(R) and the empirical expecta-
tion Φ̂S(R) to the L1-covering numbers of G. Specifically,
we use the inequality:

P

(
sup
g∈G
|E[g]− ÊS [g]| > ϵ

)
≤ 4N1(ϵ/8,G, 2m) exp

(
−mϵ2

32M2
0

)
.

(5)

where M0 = n is the bound on |l(x)|. This is derived from
the bound given in Theorem 17.1 in Anthony and Bartlett
(2009) [Anthony and Bartlett, 2009].

To bound the L1-covering number N1(ϵ/8,G, 2m), the
functions g ∈ G are affinely transformed into a scaled func-
tion class G′ = { g+M0

2M0
: g ∈ G}. Functions in G′ map

to [0, 1], and this scaling preserves the pseudo-dimension, so
Pdim(G′) = 2. Theorem 18.4 from Anthony and Bartlett
(2009) is then used to bound the L1-covering number of G′:

N1(η,G′, N) ≤ e(dPD + 1)

(
2e

η

)dPD

.

This bound for N1(·,G′, ·) is related back to N1(·,G, ·) by
adjusting the scale factor, yielding:

N1(ϵ/8,G, 2m) ≤ e(dPD + 1)

(
32eM0

ϵ

)dPD

.

Substituting this covering number bound into the uniform
convergence inequality, the resulting expression is set to be



less than or equal to δ. This inequality is then solved for the
sample size m, leading to the sample complexity formula pre-
sented in Theorem 4.2:

m ≥ 32M2
0

ϵ2

(
dPD ln

(
32eM0

ϵ

)
+ ln(4e(dPD + 1))

+ ln

(
1

δ

))
.

(6)

This ensures that with probability at least 1 − δ, the empir-
ical objective is uniformly within ϵ of the true objective for
all hypotheses in H. A detailed proof is presented in the ap-
pendix.

The above sample complexity is O
(

n2

ϵ2

(
ln n

ϵ + ln 1
δ

))
.

5 Experiments
In this section we describe our experimental framework, in-
troduce specific experiments, and present their results. The
primary goals of our current experiments are:

1. Gauge the tightness of the bound on sample complexity
identified in Theorem 4.2.

2. Explore methods by which we may identify optimal con-
sensus regions using a reduced number of queries.

5.1 Experimental Framework
We begin by describing the procedures we follow in initializ-
ing an experimental setting. This includes how we select the
regions approved by each voter, and the distributions from
which we sample. Through all experiments presented in this
paper, we have used n = 100 voters and performed 100 ran-
domly initialized trials with each set of parameters.

Constructing Voter Approval Intervals
Each voter approves a single interval in our 1D space. The lo-
cation and size of this region is not dictated by our theoretical
results. To simulate a wide variety of users we construct each
voter’s approvals based on three parameters: minimum width
wmin, maximum width wmax, and center point p. These pa-
rameters allow us to simulate settings where users are highly
agreeable (very large approval intervals), highly disagreeable
(very small approval intervals), and where both types exist
(large gap between wmin and wmax).

Interval construction occurs as follows: We select a width
w ∈ [wmin, wmax], and a center point p ∈ [0, 1], both uni-
formly at random. From p we construct the interval (p −
w
2 , p +

w
2 ). When this would result in the interval extending

above 1, or below 0, we add the “missing” width to the other
side of the interval (thus, p is not always the actual center
point of the interval).

In our experiments, we use four specific ranges of approved
region sizes. These are chosen to demonstrate the quality of
outcomes across a range of scenarios. The absence of a small
region size is intentional – when all voters approve very small
regions, there is typically no area with a positive l(x), result-
ing in an optimal “region” containing a single point.

Sampling Points
Through our experiments we consider three distributions
from which we sample points. As with voter approval in-
tervals, the choice of these distributions does not affect the
applicability of our theoretical results to our experiments but
provides insight as to how extensions of our theoretical algo-
rithm could behave under differing empirical conditions. In
particular, our sampling distributions are:

1. U(0, 1); The uniform distribution between 0 and 1.
2. N(0, 1, 0.5, 0.1); The truncated Normal distribution

with µ = 0.5, σ = 0.1, bounded in [0, 1].
3. Exp(4); The truncated Exponential distribution with

λ = 4, bounded in [0, 1].

5.2 Experimental Results
Our experimental results are divided into three sections. We
first examine how tightness of the lower bound on sample
complexity from Section 4. Subsequently, we explore the
quality of two approaches to reducing the total number of
queries asked of voters. First by asking fewer voters about
each sampled point and, second, by asking each voter about
fewer samples.

Sampling Fewer Points
We first examine our sample complexity results. In Figure 2
we decrease the number of sampled points used in identifying
the best region beginning from 1

ϵ2

(
ln n

ϵ + ln 1
δ

)
(a factor of

n2 below our upper bound) reducing to 10 sampled points.
Figure 2 shows that, across distributions, in most cases we

can use far fewer samples than our upper bound on sample
complexity and attain the same quality as guaranteed theoret-
ically. Of course, as we decrease the number of samples the
quality of the best discovered region begins to reduce. In or-
der to develop more empirically practical procedures for iden-
tifying consensus regions our subsequent experiments con-
sider two strategies for reducing the total number of sample
evaluations performed.

Querying Fewer Voters
A straightforward approach to reducing the cost of running
our procedure is to ask fewer voters whether they approve of
each sampled point. Several techniques exist that are suitable
for estimating the number of queries required at each point x
to be confident in the value of l(x). However, in this work we
simply explore the effect of asking some constant fraction of
voters for their evaluation of each sample.

In Figure 3 we decrease the proportion of voters being
queried. At each step we sample a random subset of vot-
ers with size proportional to the amount shown in the x-axis.
This approach provides a linear decrease in the overall cost
of identifying a region of consensus. Based on the results
shown in Figure 2 we sample 10,000 points for each experi-
ment shown in Figure 3.

However, the results show that this approach very quickly
reduces the quality of the underlying region. We hypoth-
esize that this reduction in performance is related to both
the relatively low number of voters we use in our experi-
ment (n = 100) and the fact that each voter’s approved re-
gion is sampled uniformly at random. Since the location



Figure 2: The fraction of regions with a score within ϵ of the optimal region’s score as the number of sampled points decreases from
1
ϵ2

(
ln n

ϵ
+ ln 1

δ

)
to 10. Note that, due to computational limitations, the maximum number of samples displayed is a factor of n2 below our

upper bound found in Section 4. In general, our approach finds nearly optimal regions using far fewer samples than theoretically necessary.
Here ϵ = δ = 0.01 and we perform 100 trials for each different number of samples to get an empirical estimate of δ.

of one voter’s region does not inform the location of any
other voter’s region, the consensus interval does not gener-
alize well. In contrast, if voter intervals were correlated, we
hypothesize that the quality of the interval would reduce at a
slower rate with a decreasing fraction of voters sampled.

This hypothesis offers an explanation for why the quality
of the optimal region decreases less quickly under the Trun-
cated Normal distribution: As this region is centred around
the middle of the 1D interval, when voters approve of larger
regions, the optimal region is more likely to be in the center
also. This bias towards the center leads to better generaliza-
tion of the consensus interval.

Querying Voters Intelligently
Rather than asking a subset of voters about each sampled
point, we can instead ask each voter about a subset of sam-
pled points. We can perform a binary search-like procedure
to find both endpoints of each voter’s approved region.

For each voter v, this search proceeds as follows:

1. Ask v whether they approve some sampled point until
finding a point that they approve. We ask about points
at particular fractions through the entire list of ordered
samples following the pattern { 12 ,

1
4 ,

3
4 ,

1
8 ,

2
8 , ...} (First

the median point, then the lower quartile point, then the
upper quartile point etc).

2. Given an approved sample point p, determine the left-
most extent of v’s continuous approval that includes p.
Let Rbound be the current right boundary of the search
(initially p) and Lbound be the current left boundary (ini-
tially the first sample point in the dataset). Repeat-
edly query v on the sample point q midway between
Lbound and Rbound. If q is approved, update Rbound to
q (as the approval extends at least this far left). If q is
disapproved, update Lbound to be the sample point im-
mediately to the right of q. Continue until Lbound and

Rbound converge, identifying the left edge of approval
and thereby labeling all queried points.

3. Perform step 2 on the points to the right of p.

We show in Figure 4 the number of sampled points used in
the experiment shown in Figure 2 and the average number of
points upon which each voter must be queried in order to find
the best region. For example, when we sample 105 points, we
typically identify the optimal region using only slightly more
than 30 queries per voter. This active approach to querying
voters dramatically reduces the number of queries required
to identify the optimal region. Such an approach is vital for
any application of this method to human settings.

6 Related Work
The problem of identifying consensus or aggregating prefer-
ences connects to several research streams. Qiu [Qiu, 2024]
presents a “Representative Social Choice” model, framing
social choice as statistical learning and using VC dimen-
sion and Rademacher complexity for generalization bounds.
This aligns with our PAC learning approach (using pseudo-
dimension). However, our work focuses on finding an opti-
mal 1D consensus interval that maximizes a net agreement
score, given known voter intervals and sampled issues, rather
than Qiu’s axiomatic focus.

Platforms like Polis [Small et al., 2021] use computational
techniques like PCA and k-means to identify consensus from
user votes. However, its methods are heuristic and descrip-
tive, lacking the formal objective function optimization and
provable PAC guarantees central to our work. Our approach
formalizes consensus as maximizing E[l(x)1 {x ∈ I}] and
provides an algorithm with theoretical performance bounds.

Halpern et al. [Halpern et al., 2023] also addresses chal-
lenges in Polis-like systems, specifically incomplete approval
votes, by modelling the task as approval-based committee se-



Figure 3: The fraction of regions with a score within ϵ of the optimal region’s score as we query a decreasing fraction of voters. In all cases
ϵ = δ = 0.01 and we sample 10000 points from the distribution. Each set of parameters is run for 100 randomly initialized trials. Quality of
the best region found decreases rapidly as fewer voters are queried.

Figure 4: Average number of points required to identify each voter’s
approved region compared with the total number of sampled points
for voters approving a region with width in 0.4, 0.6).

lection. They develop adaptive algorithms to achieve fair-
ness guarantees like Justified Representation. While they also
learn from partial information, their goal of committee selec-
tion contrasts with our PAC-based optimization of a consen-
sus interval from known voter intervals and sampled issues.

Anshelevich et al. [Anshelevich et al., 2018] also consider
preferences within a metric space, where both voters and al-
ternatives are points, and preferences are determined by prox-
imity. While their use of a metric space for preferences is
similar to our 1D issue space, their focus on distortion with
ordinal inputs contrasts with our PAC learning approach.

Finally, very related to our work is [Elkind et al., 2024],
which studied the problem of consensus formation in metric
spaces where coalitions form iteratively around points elicit-
ing wider support. That work, however, abstracts away from
the problem of identifying such consensus points, which has
been the explicit focus of the work presented here.

7 Conclusion and Future Work
This paper introduced a formal framework for passive PAC
learning of a consensus interval in a one-dimensional opin-

ion space. We defined an objective function based on ag-
gregated voter approval intervals, presented an efficient ERM
algorithm using Kadane’s method, and derived sample com-
plexity bounds based on a pseudo-dimension of 2 for the as-
sociated function class. These results provide a theoretical
basis for identifying regions of maximal approval with prov-
able guarantees.

Future work could pursue several directions:
Active Learning: Developing algorithms for the “PAC

Queries” setting, where voter labels are acquired strategically
to minimize query costs while learning the consensus interval
or individual voter intervals.

Higher Dimensions: Extending the model and analysis to
find consensus regions in multi-dimensional spaces, which
is more directly applicable to complex data like text embed-
dings. This will involve different hypothesis classes (e.g.,
axis-aligned rectangles or balls).

Alternative Objectives: Exploring different normative
definitions of “consensus.” For example, we considered the
overlap between voter intervals and the consensus interval as
desirable and the overlap between the consensus interval and
the complement of voter intervals as a negative. However,
one could also argue that a lack of overlap between voter in-
tervals and the consensus interval is also undesirable.

AI Alignment: Integrating the consensus-finding frame-
work to distill salient regions of acceptable AI expression.
Learned consensus intervals could operate as filters or inform
the reward mechanisms within RLAIF [Lee et al., 2023].

Empirical Validation: We motivated our paper with ap-
plications like online deliberation platforms, but tested our
method on synthetic data. However, extending to real-world
datasets from platforms like Pol.is is necessary in order to un-
derstand how well our algorithms would perform in practice.

The overall goal of this line of research is to identify com-
putationally viable methods for salient consensus elicitation
in complex collective decision-making settings.
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2021.



A Proof of Lemma 4.1
Proof. The pseudo-dimension Pdim(G) is the maximum in-
teger d such that there exists a set of d points {x1, . . . , xd}
that can be pseudo-shattered by G. To pseudo-shatter a set
of points means there exist thresholds r1, . . . , rd ∈ R such
that for any binary vector (b1, . . . , bd) ∈ {0, 1}d, there is a
function gR ∈ G (i.e., an interval R) for which 1{gR(xi) >
ri} = bi for all i = 1, . . . , d. If l(x) is identically zero, then
gR(x) = 0 for all R, x. Then 1{gR(xi) > ri} = 1{0 > ri},
which does not depend on R. Thus, no points can be shat-
tered, and Pdim(G) = 0. We now assume l(x) is not identi-
cally zero, and thus that some voter has a non-empty approval
interval.

Part 1: Show Pdim(G) ≥ 2. We need to show that there
exists a set of 2 points that G can pseudo-shatter. Since l(x)
is not identically zero, there exist at least two distinct points
x1 < x2 where l(x1) ̸= 0 and l(x2) ̸= 0. (If l(x) is non-zero
at only one point, Pdim(G) would be 1. The class of inter-
vals allows isolating individual points or pairs, making the
existence of two such distinct points x1, x2 a typical scenario
for non-trivial l(x) relevant to this problem).

Let x1 < x2 be two points such that l(x1) ̸= 0 and
l(x2) ̸= 0. We define thresholds r1, r2 based on the signs
of l(x1), l(x2).

Case A: l(x1) > 0 and l(x2) > 0. Let rj = l(xj)/2.
Then rj > 0. The condition 1{l(xj)1 {xj ∈ R} > rj} =
bj becomes 1{l(xj)1 {xj ∈ R} > l(xj)/2} = bj . If xj ∈
R: 1{l(xj) > l(xj)/2} = 1 (since l(xj) > 0). If xj /∈
R: 1{0 > l(xj)/2} = 0 (since l(xj)/2 > 0). So, bj =
1 {xj ∈ R}.

Case B: l(x1) < 0 and l(x2) < 0. Let rj = l(xj)/2.
Then rj < 0. The condition 1{l(xj)1 {xj ∈ R} > rj} = bj
becomes 1{l(xj)1 {xj ∈ R} > l(xj)/2} = bj . If xj ∈ R:
1{l(xj) > l(xj)/2} = 0 (since l(xj) < 0, e.g., −2 > −1 is
false). If xj /∈ R: 1{0 > l(xj)/2} = 1 (since l(xj)/2 < 0).
So, bj = 1 {xj /∈ R} = 1− 1 {xj ∈ R}.

Case C: l(x1) > 0 and l(x2) < 0. Let r1 = l(x1)/2 and
r2 = l(x2)/2. Then b1 = 1 {x1 ∈ R} and b2 = 1 {x2 /∈ R}.

In all cases (A, B, C, and C with signs swapped), the pair
(b1, b2) is determined by (1 {x1 ∈ R} ,1 {x2 ∈ R}) or sim-
ple transformations thereof. The class of indicator functions
{1 {x ∈ R} : R is an interval} has VC-dimension 2, mean-
ing it can shatter a set of two points {x1, x2}. That is, all
4 patterns for (1 {x1 ∈ R} ,1 {x2 ∈ R}) are achievable by
varying R:

• (1 {x1 ∈ R} ,1 {x2 ∈ R}) = (1, 1) by R = [x1, x2].
• (1 {x1 ∈ R} ,1 {x2 ∈ R}) = (0, 0) by R = ∅.
• (1 {x1 ∈ R} ,1 {x2 ∈ R}) = (1, 0) by R = [x1, x1].
• (1 {x1 ∈ R} ,1 {x2 ∈ R}) = (0, 1) by R = [x2, x2].

In Case A, (b1, b2) directly achieves these 4 patterns.
In Case B, if (1 {x1 ∈ R} ,1 {x2 ∈ R}) takes values
(1, 1), (0, 0), (1, 0), (0, 1), then (b1, b2) takes values
(0, 0), (1, 1), (0, 1), (1, 0) respectively. All 4 patterns
are achieved. In Case C, if (1 {x1 ∈ R} ,1 {x2 ∈ R})
takes values (1, 1), (0, 0), (1, 0), (0, 1), then
(b1, b2) = (1 {x1 ∈ R} , 1 − 1 {x2 ∈ R}) takes values
(1, 0), (0, 1), (1, 1), (0, 0) respectively. All 4 patterns are

achieved. Thus, under the condition that l(x) is non-zero
at two distinct points x1, x2, we can find thresholds r1, r2
such that all 4 binary patterns for (b1, b2) are generated.
Therefore, Pdim(G) ≥ 2.

Part 2: Show Pdim(G) ≤ 2.
We must show that no set of 3 points can be pseudo-

shattered by G. Let x1 < x2 < x3 be any three distinct
points in R. Let r1, r2, r3 be any three real-valued thresholds.
Let bj(R) = 1{gR(xj) > rj} = 1{l(xj)1 {xj ∈ R} >
rj}. For each point xj , l(xj) is a fixed real number and
rj is a fixed threshold. We define two values for each
point xj : s

(1)
j = 1{l(xj) > rj} (this is the outcome

bj(R) if xj ∈ R) s
(0)
j = 1{0 > rj} (this is the out-

come bj(R) if xj /∈ R) Thus, for any interval R, the
generated binary vector (b1(R), b2(R), b3(R)) is formed as
(s

(1{x1∈R})
1 , s

(1{x2∈R})
2 , s

(1{x3∈R})
3 ).

Let fR(xj) = 1 {xj ∈ R}. The vector of indica-
tors (fR(x1), fR(x2), fR(x3)) represents which of the three
points are included in the interval R. It is a standard result
that the class of 1D intervals (a Vapnik-Chervonenkis class)
has VC-dimension 2. This means it cannot shatter any set of
3 points. Specifically, for x1 < x2 < x3, the indicator pattern
(fR(x1) = 1, fR(x2) = 0, fR(x3) = 1) cannot be generated
by any interval R. If x1 ∈ R and x3 ∈ R for an interval R,
then all points between x1 and x3 must also be in R, mean-
ing x2 ∈ R. Thus, fR(x2) must be 1 if fR(x1) = 1 and
fR(x3) = 1.

Let Pf = {(fR(x1), fR(x2), fR(x3)) : R is an interval}
be the set of all possible indicator patterns generated on
x1, x2, x3 by intervals. Since the pattern (1, 0, 1) is not in Pf ,
the size of Pf is |Pf | ≤ 23−1 = 7. The set of output vectors
V = {(b1(R), b2(R), b3(R)) : R is an interval} is obtained
by applying the fixed mapping (defined by s

(0)
j , s

(1)
j for each

j) to each vector in Pf . That is, V = {(s(v1)1 , s
(v2)
2 , s

(v3)
3 ) :

(v1, v2, v3) ∈ Pf}. Since the mapping is from Pf to V , it
must be that |V | ≤ |Pf |. Therefore, |V | ≤ 7. As V con-
tains at most 7 distinct vectors, it cannot be equal to the set
of all 23 = 8 binary vectors {0, 1}3. This means that for
any set of 3 points x1 < x2 < x3 and any set of thresholds
r1, r2, r3, there is at least one binary pattern in {0, 1}3 that
cannot be generated by G. Thus, no set of 3 points can be
pseudo-shattered by G, which implies Pdim(G) < 3, and
therefore Pdim(G) ≤ 2.

Conclusion: Since Pdim(G) ≥ 2 and Pdim(G) ≤ 2,
we conclude that Pdim(G) = 2, provided l(x) is not identi-
cally zero (specifically, non-zero on at least two points where
the interval class can distinguish them as required for the
Pdim ≥ 2 construction).

B Proof of Theorem 4.2
Proof. To derive the sample complexity bound, we first
note that the functions gR(x) ∈ G are bounded by
M0 = maxx |l(x)| = n, since l(x) takes integer val-
ues in {−n, . . . , n}. The pseudo-dimension of G, dPD =
Pdim(G), is 2 as established in Lemma 4.1.

For a class of functions G whose members g are bounded
such that |g(x)| ≤ M0, the probability that the empirical



mean ÊS [g] deviates from the true mean E[g] by more than ϵ
for any g ∈ G is bounded as:

P

(
sup
g∈G
|E[g]− ÊS [g]| > ϵ

)
≤ 4N1(ϵ/8,G, 2m) exp

(
−mϵ2

32M2
0

)
Here,N1(η,G, 2m) is the L1-covering number of the class

G at scale η for 2m points.
To utilize pseudo-dimension bounds for covering numbers,

which are typically stated for functions mapping to [0, 1],
we introduce a scaled function class G′. Let g ∈ G. De-
fine g′ = g+M0

2M0
. These functions g′ ∈ G′ map to [0, 1].

The pseudo-dimension of G′ is the same as that of G, i.e.,
Pdim(G′) = dPD = 2, because pseudo-dimension is in-
variant under positive affine transformations of the function
outputs. Anthony and Bartlett (2009, Theorem 18.4) provide
a bound for the L1-covering number of a class of functions
mapping to [0, 1] in terms of its pseudo-dimension dPD:

N1(η,G′, N) ≤ e(dPD + 1)

(
2e

η

)dPD

for N points.
We need to relate N1(ϵ/8,G, 2m) to a covering number

for G′. The L1-distance between two functions g1, g2 ∈ G
relates to their scaled versions g′1, g

′
2 ∈ G′ by ES [|g1−g2|] =

ES [|(2M0g
′
1−M0)− (2M0g

′
2−M0)|] = 2M0ES [|g′1−g′2|].

Thus, an η′-cover for G′ corresponds to a 2M0η
′-cover for G.

This implies N1(ϵ0,G, 2m) = N1(ϵ0/(2M0),G′, 2m). For
ϵ0 = ϵ/8, we have:

N1(ϵ/8,G, 2m) = N1

(
ϵ/8

2M0
,G′, 2m

)
= N1

(
ϵ

16M0
,G′, 2m

)
Let η′ = ϵ

16M0
. Using the covering number bound for G′

with N = 2m points:

N1

(
ϵ

16M0
,G′, 2m

)
≤ e(dPD + 1)

(
2e

ϵ/(16M0)

)dPD

= e(dPD + 1)

(
32eM0

ϵ

)dPD

Substituting this into the uniform convergence probability
bound:

P

(
sup
g∈G
|E[g]− ÊS [g]| > ϵ

)
≤ 4e(dPD + 1)

(
32eM0

ϵ

)dPD

exp

(
−mϵ2

32M2
0

)
We want this probability to be at most δ. So we set:

4e(dPD + 1)

(
32eM0

ϵ

)dPD

exp

(
−mϵ2

32M2
0

)
≤ δ

To solve for m, we can rearrange and take the natural loga-
rithm:

exp

(
mϵ2

32M2
0

)
≥

4e(dPD + 1)
(
32eM0

ϵ

)dPD

δ

mϵ2

32M2
0

≥ ln

(
4e(dPD + 1)

(
32eM0

ϵ

)dPD

· 1
δ

)
mϵ2

32M2
0

≥ ln(4e(dPD + 1)) + dPD ln

(
32eM0

ϵ

)
+ ln

(
1

δ

)
Finally, solving for m:

m ≥ 32M2
0

ϵ2

(
dPD ln

(
32eM0

ϵ

)
+ ln(4e(dPD + 1)) + ln

(
1

δ

))
.
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