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Abstract
Viscous democracy is a generalization of liquid
democracy, a social choice framework in which
voters may transitively delegate their votes. In vis-
cous democracy, a ”viscosity” factor decreases the
weight of a delegation the further it travels, re-
ducing the chance of excessive weight flowing be-
tween ideologically misaligned voters. We demon-
strate that viscous democracy often significantly
improves the quality of group decision-making
over liquid democracy. We first show that finding
optimal delegations within a viscous setting is NP-
hard. However, simulations allow us to explore the
practical effects of viscosity. Across social network
structures, competence distributions, and delega-
tion mechanisms we find high viscosity reduces the
chance of “super-voters” attaining large amounts of
weight and increases the number of voters that are
able to affect the outcome of elections. This, in
turn, improves group accuracy as a whole. As a re-
sult, we argue that viscosity should be considered a
core component of liquid democracy.

1 Introduction
Liquid democracy [Blum and Zuber, 2016], an evolving con-
cept in democratic theory, seeks to address the limitations of
traditional direct and representative democracy by enabling
flexible delegation of voting power. To do so, in liquid
democracy, individuals choose between casting their votes
directly or delegating their voting power to another voter
of their choice. In contrast to simple proxy voting [Green-
Armytage, 2015], delegations are transitive and a delegation
may “flow” through many voters. By merging the strengths of
direct democracy and representative decision-making, liquid
democracy enhances epistemic decision-making by incorpo-
rating diverse perspectives and informed opinions.

We study a generalization of liquid democracy – viscous
democracy [Boldi et al., 2011] – which effectively lim-
its the maximum weight voters can attain. In this variant,
vote weights decrease exponentially the further a delega-
tion travels. This “viscosity” in the computation of the vote
weights has its roots in random walks and the PageRank algo-
rithm [Berkhin, 2005]. Viscous democracy offers a compro-

mise between the advantages of delegation and direct voting,
potentially curbing excessive concentration of power while
maintaining the flexibility core to liquid democracy.

Here, we are interested in quantifying the potential bene-
fit of adding viscosity to liquid democracy. A pivotal factor
in this assessment is the dampening factor or “viscosity” –
denoted by α throughout the paper – which governs the rate
of weight decay as delegation chains lengthen. As we show,
the influence of α extends beyond decision quality, affecting
the overall structure of those delegation graphs that achieve a
high quality of decision making. We are interested in identi-
fying suitable values of α generally and for specific settings.
Specifically, we seek to unravel the relationship between the
value of α and the quality of decision making, as well as ex-
ploring how α shapes the topology of optimal delegations.

In this paper we adopt a dual approach, employing analyti-
cal and theoretical methodologies, as well as computer-based
simulations. Theoretical analyses provide insights into the
fundamental dynamics and properties of viscous democracy;
simulations, on the other hand, offer a tangible platform for
observing the empirical behavior of viscous democracy un-
der varied conditions, facilitating a more realistic assessment
of its outcomes and interactions. The combination of these
approaches enriches our understanding of the complex inter-
actions within the system of viscous democracy.

We view our work as fundamental to the better understand-
ing of viscous democracy; as such, it paves the way to tools
that can optimally parameterize viscous democracy in differ-
ent settings, setting the dampening parameter α based on the
specific properties of the setting at hand. As we show, the im-
provement to the quality of decision making from viscosity is
frequently significant.

Remark 1. The introduction of viscosity to liquid democracy
is a deviation from the principle of “one person, one vote”
which, therefore, may render it inappropriate for democratic
contexts in which equality in voting is essential [Shapiro,
2018]. We show, however, that it does prove advantageous
in other applications; in particular, in those that prioritize
prediction accuracy (e.g., a group prediction regarding the
price of some stock), group recommendation (the applica-
tion discussed alongside the introduction of viscous democ-
racy [Boldi et al., 2011]), and other, general collaborative
settings (e.g., a collaborative venture capital such as The
DAO [Hassan and De Filippi, 2021]). In these scenarios –



due to varying levels of competence in the population around
different topics of discussion – the nuanced decision-making
facilitated by viscosity enhances collective intelligence, al-
lowing for better decision making.

2 Related Work
By now, there is a relatively large corpus of literature on
liquid democracy. This includes works that study liquid
democracy from a political science perspective [Blum and
Zuber, 2016; Paulin, 2020]; from an algorithmic point of
view [Kahng et al., 2021; Dey et al., 2021; Caragiannis and
Micha, 2019]; from a game-theoretic point of view [Zhang
and Grossi, 2021; Bloembergen et al., 2019; Escoffier et al.,
2019]; and from an agenda aiming to increase the expres-
sive power that is granted to voters [Brill and Talmon, 2018;
Jain et al., 2022].

This work concentrates on the epistemic approach to social
choice; we assume some ground truth of the decision to be
made and evaluate the accuracy of the voting system at reveal-
ing ground truth using a common model for epistemic liquid
democracy [Alouf-Heffetz et al., 2022; Kahng et al., 2021;
Caragiannis and Micha, 2019; Halpern et al., 2021].

Viscous democracy is relatively under-studied within liq-
uid democracy. The original paper on the topic [Boldi et al.,
2011] establishes some intuition and a relation to the PageR-
ank algorithm [Berkhin, 2005]; but there is no analysis re-
garding the effect of one specific value of the dampening fac-
tor compared to another, nor is there analysis discussing how
to choose the factor. Viscous democracy was also applied as a
setting for group recommendation system [Boldi et al., 2015].

3 Model
Our formal model describes how voters are embedded in an
underlying social network, how they may delegate, and how
group decisions are ultimately made.

3.1 Delegation Graphs
We adopt a basic epistemic social choice setting with n vot-
ers, V = {v1, . . . , vn}, and two alternatives A = {a+, a−}.
We assume that a+ is an objectively correct outcome that all
voters collectively aim to elect. Each voter vi ∈ V has a com-
petency level qi ∈ Q in the range [0, 1] that corresponds to the
probability that vi would vote “correctly” (i.e., would vote for
a+). Voters are connected via an underlying social network
G = (V,E) with a set of undirected edges E representing the
connections between voters (where delegations can occur as
direct arcs only along these connections).

Our model generalizes liquid democracy – a system en-
abling transitive delegations. Each voter vi is able to perform
one of two actions: They may vote directly, as above, support-
ing a+ with probability qi, or they may delegate their vote to
a voter in their set of neighbours, NG(i) = {j ∈ V |(i, j) ∈
E}. If a voter votes directly, then we refer to them as a guru
and model them as delegating to themselves.

A delegation function d : V → V outputs the delegation of
each voter. d(vi) = vj indicates that vi delegates to vj . Dele-
gation applies transitively so that a delegation might “travel”

several hops before reaching a guru. d∗(vi) refers to the re-
peated application of d(vi) until a self-delegation (i.e. a guru)
is reached. The guru of vi is d∗(vi) and denote the set of all
gurus as G(V ). We disallow any delegation from vi to vj that
would result in a cycle.This is done to prevent loss of votes
within the voting process. In our experiments we choose a
fixed proportion of voters to delegate while the remainder
vote directly.

Note that a delegation function induces a directed sub-
graph of G containing (directed versions of the) edges in E
only when a delegation flows between the two nodes of an
edge. We call this a delegation graph of G, denoted D =
(V, {(i, j) ∈ E|d(i) = j}). A delegation graph can be con-
ceived of as a forest of directed trees, where all edges in each
tree flow towards the singular guru in that tree.

3.2 Vote Weights
In “traditional” liquid democracy, the weight of each guru is
equal to the number of delegations it receives, either directly
or indirectly. This paper builds upon a model introduced by
Boldi et al. referred to as viscous democracy [Boldi et al.,
2011]. Each edge that a delegation travels reduces its weight
by a constant dampening factor α ∈ [0, 1], also referred to as
the viscosity. Thus, the weight of each voter vi is,

wi =

{
0 if vi /∈ G(V )∑

p∈Path(−,i) α
|p| otherwise

where Path (−, i) denotes all paths of delegations that
reach vi. Note the following:

• When α = 1, viscous democracy reduces to the standard
liquid democracy setting.

• At lower values of α, guru weights change based upon
the structure of the delegation graph. Weights of voters
that are further away from their guru decrease more than
the weights of voters close to the guru.

• As there are no cycles, there is at most one path between
any two voters.

3.3 Group Accuracy
As there are only two alternatives, we use weighted plurality
voting (following May’s theorem [May, 1952]) to determine
the winner of an election. Specifically, each guru selects one
alternative, based upon their competence, and commits all of
their weight to supporting that alternative. The alternative
receiving the most total weight is the winner. The probability
that a+ will be selected as the winner is referred to as group
accuracy, or, simply accuracy.

Accuracy is a function of the delegations and the voter
competencies but, crucially, it is also affected by α. We de-
note the accuracy of given viscosity, competencies, and dele-
gations as Acc(α,Q,D). We refer to the value of α that max-
imizes group accuracy as α∗. The existence of 0 < α∗ < 1
and the dynamics of α∗ are a major focus of this paper.

We can now formally specify an election by either of two
forms (we use these interchangeably, as the first form implies
the second):



A

B C

Figure 1: A Stars and Chains delegation graph. The value of α∗ de-
pends greatly upon the competence values assigned to each of gurus
A, B, and C.

1. E = (Q,G, d): Here, an election is a combination of
voter competencies, an underlying social network, and
a delegation function which may be used to determine a
delegation graph D; or

2. E = (Q,D): Here, an election consists of voter compe-
tencies and an already existing delegation graph.

4 Families of Delegation Graphs
Throughout this paper we explore several different families of
delegation graphs of two varieties: We first describe delega-
tion graphs that are induced by the application of a delegation
function to voters on a social network. Second, we introduce
two simple delegation graph models that are constructed di-
rectly, without a specific delegation function, to serve as il-
lustrative examples.

4.1 Social Networks
Our experiments explore two types of underlying social
networks G that voters exist upon: both empirical and
artificially-generated networks. The empirical networks we
consider are collected from a variety of sources and detailed
in Appendix C.

To generate artificial networks we use two well-studied
probabilistic models that are often used to replicate prop-
erties of real-world social networks [Kleinberg, 2010]:
Erdős–Rényi (ER) and Barabási–Albert (BA) networks. Both
of these models are parameterized by the number of nodes
and a parameter controlling their edge density [Erdos et al.,
1960; Albert and Barabási, 2002]. Unless stated otherwise,
voters are placed on social networks uniformly at random.

4.2 Delegation Functions
Delegation functions use a social network and the compe-
tence of each voter to determine, for each delegating voter, to
whom they delegate. We define delegation probability func-
tions p(vi, vj) as giving the probability that vi will delegate
to vj . A delegation function d specifies a delegate for each
voter based upon p(vi, vj). Our experiments consider several
concrete delegation probability functions, defined formally in
Appendix A:

• Max: Each delegating voter delegates to their most com-
petent neighbour.

• Random Better: Each delegating voter delegates to a
neighbour more competent than themselves chosen with
uniformly random probability.

• Proportional Better: Each delegating voter delegates
to a neighbour more competent than themselves chosen

Algorithm 1 Competence-Based Attachment (CBA)
Input: V,Q,G

1: S ← G
2: E ← ∅
3: D ← (V,E)
4: while S ̸= V do
5: Select one voter vi ∈ V \ S uniformly at random.
6: Select one voter vj ∈ S with probability proportional

to its relative competence; P (vj) ∝ qj∑
vk∈S

qk

7: Attach: E ← E ∪ (vi, vj).
8: Update: S ← S ∪ {vi}.
9: end while

with probability proportional to the competence of each
potential guru.

• Proportional Weighted: Each delegating voter dele-
gates to a neighbour more competent than themselves
with probability proportional to the competence and
weight of each potential guru, such that gurus with
higher weight are less likely to receive delegations.

4.3 Delegation Graph Models
We also explore two directly-constructed graph families
which we use to demonstrate the possible effects of chang-
ing viscosity. The first model is a natural adaptation of the
model of preferential attachment while the second model gen-
erates very simple graphs that highlight some basic topologi-
cal properties that affect the optimal viscosity.

• Competence-Based Attachment (CBA): This model
creates a delegation graph by applying the idea of prefer-
ential attachment to voter competencies [Battiston et al.,
2020]. Given voter competencies and some set of gu-
rus the remaining voters select a delegate based upon the
relative competence of each potential delegate. For com-
pleteness, Algorithm 1 outlines the procedure in more
detail.

• Stars and Chains (SC): A basic structure parameterized
by (s, scomp, ns, c, ccomp, nc). This model constructs a
delegation graph consisting of s small star components
each with ns − 1 delegators and 1 guru, and c large
chains with nc − 1 delegators. Gurus are thus located at
the center of the stars and at one end of the chains. Gu-
rus in star and chain components have competence ccomp
and scomp, respectively. Each chain component should
have more voters than are in all star components com-
bined, that is nc > sns (typically we have considered
settings where nc = sns + 1 but that is not required).
Figure 1 visualizes a simple SC delegation graph.

5 Optimal Delegation Graphs
Here we provide bounds on the complexity of finding dele-
gations within a viscous setting that maximizes group accu-
racy. Informally, given a social network and some value of α,
we are interested in the combinatorial problem of picking for
each voter whether she will vote directly or whether she will
delegate to some other voter, and, if so, to whom.



Definition 1. In the OPTIMAL DELEGATION GRAPH (ODG)
problem we are given a network of voters G = (V,E) and the
task is to find a subgraph D = (V,ED ⊆ E) that is a viable
delegation graph of G (i.e. there are no cycles in D) and
which maximizes the accuracy.

Next we analyze the computational complexity of ODG.
First, note that, for the case of α, we can solve ODG in poly-
nomial time.
Theorem 1. For α = 0, ODG is in P.

Proof. Observe that, for α = 0, setting a voter to delegate to
some other voter effectively removes that voter, as no weight
is transferred through delegation. Thus, to solve ODG we
can iterate over k ∈ [n] ∪ {0}, which is the number of voters
to remove. In particular, for each k ∈ [n] ∪ {0}, look for
the k voters with the lowest accuracy and remove them (i.e.
have them make arbitrary delegations). Now, compute the
accuracy (this can be done in polynomial time using dynamic
programming [Becker et al., 2021]). Finally, select the k for
which the accuracy is the highest.

As all voters are equally weighted, it is always strictly bet-
ter to include a more competent voter in place of a less com-
petent voter and removing some number of least competent
voters will solve ODG.

For α = 1, however, Caragiannis and Micha (2019) have
shown that ODG is NP-hard.
Corollary 1. For α = 1, ODG is NP-hard. Furthermore, for
this case, it is also NP-hard to approximate ODG to within a
factor of 1/16 [Caragiannis and Micha, 2019].

Below, we provide the first results on the complexity of
ODG for 0 < α < 1.
Theorem 2. For α = 1

m ,m ∈ N, ODG is NP-Hard.

Proof. The proof follows a reduction from the NP-hard prob-
lem Restricted Exact Cover by 3-Sets (X3C) [Gonzalez, 1985]
to ODG. An instance of X3C consists of a set X =
{x1, .., x3n}, a family F = {S1, .., S3n} where each set Si

has 3 elements from X , and each element from X appears in
exactly 3 sets from F . The task is to decide whether a sub-
family F ′ ⊂ F such that X =

⋃
Sj

Sj∈F ′
and Sj ∩ Si = ∅ exists.

We will construct the following instance for the ODG prob-
lem (see Figure 2):

• For each set S1, .., S3n we will have a voter Si with com-
petence qSi > 0.5.

• For each element xi ∈ X we have 3 sets Si1 , Si2 , Si3
that xi appears in. We connect an outgoing edge to each
Si from xi. The competence of xi is set to qxi

= 0,∀i ∈
1, .., 3n.

• Lastly, we have a set of dummy voters d1, .., d2n with
competence qd = 0 that are connected to all the the
set voters S1, .., S3n with outgoing edges. Each dummy
voter has peripherally a set of dummy voters ei1, .., e

i
z

that are connected to it. Each has competence of qe = 0,
designed to incentivize the dummy voters to delegate
otherwise they contribute negatively to the outcome of
an election.

This completes the description of the reduction. Below we
prove the two directions for correctness.

=⇒ Given a solution for the Restricted 3-Set Exact Cover
F ′ = {Sj1 , Sj2 .., Sjn}, we shall delegate each xi to its corre-
sponding Sj it appears in F ′. There is only one such set Sjℓ
because F ′ is an exact cover. Each of these Sj in layer 2 (see
figure 2) voters now has a weight of 1 + 3α: weight from the
node itself plus weight from three delegators, xj1 , xj2 , xj3 ,
that are each one hop away (and thus have their weight re-
duced by the viscosity factor). For the remaining 2n sets in
layer 2 we shall delegate one dummy voter from d1, .., d2n to
each set in layer 2 that is Sr ∈ F\F ′, the matching is arbitrar-
ily. Since each set Sr receives one dummy d voter delegation
and further delegations from z peripheral e voters that travel
an extra hop. Sr has a total weight of 1+α+z ·α2. Thus, we
set z = 2

α then all the Si voters in the central layer have the
same weight, w∗ = 1+3α. We know that this corresponds to
the optimal weight distribution due to a direct application of
Condorcet’s Jury Theorem [Grofman et al., 1983]: Each Si

has qSi
> 0.5 so more active Si will monotonically increase

group accuracy, and optimal weighted voting for when all Si

have the same competence is equal weight distribution.
⇐= Next, we show that optimal delegation indeed leads

to an exact cover. First we have to consider that the only vot-
ers that would be active are the {Si}, since they are solely
the ones with positive competence. They all have the same
competence, that is larger then 0.5, so an optimal outcome
would take place when they all have equal weight, again (see
[Grofman et al., 1983]). Distributing the total weight equally
would mean each set voter Si would get one dummy voter dj
with its associated voters ei1, .., e

i
z or three delegations from

x1, .., x3n voters. Since any other combination of voter dele-
gations would mean some voters would receive excess weight
and at least one voter would end up with less weight, thus
causing a deviation from the optimal weight of w∗ = 1+3α.
Note that we could achieve lower weight for di if any of the
peripheral eij did not delegate, but since their competence is
zero they must not be active voters in the optimal delegation
graph as that would reduce group accuracy. Next we look at
the sets Si that have incoming delegations from the first layer
of xi and select those Si’s to be our cover F ′, we know that
it satisfies all the condition to be a restricted exact 3 set cover
for X .

Remark 2. Theorem 2 could be extended to any rational α =
k
m by reducing from the X (k + 1)C problem (i.e., restricted
exact cover with sets containing k + 1 elements, where each
element x appear in exactly k + 1 sets). The construction
follows similar steps; we then set z = m, which causes the
optimal weight to be w∗ = 1 + (k + 1) · α for each set.

6 Some Pathological Cases Regarding α∗

We now concentrate on whether viscosity provides actual
benefits to accuracy over liquid democracy. The standard
model of liquid democracy used in most prior work only ex-
plores the situation where α = 1. In contrast, recall that
α = 0 is a form of direct democracy where delegated votes
become irrelevant as their weight is 0 and all gurus have equal



Figure 2: Illustration of the reduction described in the proof of Theo-
rem 2. There are 4 layers of nodes, the bottom layer is corresponding
to elements from the set X , the second layer are the sets S1, .., S3n.
The third layer is dummy voters {di}, and the fourth layer is an ad-
ditional set of dummy voters connected to the third layer in order to
adjust the weights.

weight. Viscous democracy lies in the middle between these
two settings with 0 < α < 1. In this section we show that
there exist many parameterizations of delegation graphs for
which a different one of direct, liquid, and viscous democ-
racy are strictly beneficial.

Note that accuracy is a piecewise function with respect
to α: i.e., accuracy changes only when α causes a change
in the sets of gurus that make up a majority of weight. This
means that, typically, α∗ is not a unique value but rather a
range of values. However, for simplicity we typically refer to
it as a single value.

6.1 Liquid Democracy: α∗ = 1

We first show that there exist settings in which liquid democ-
racy (i.e., where α∗ = 1) leads to optimal accuracy. Below
we present an example where increasing α always weakly in-
creases accuracy.

Example 1. Consider the delegation graph in Figure 1 with
3 chains of voters. Let qA = 0.9 and qB = qC = 0.4. When
α = 1, wA = 5 and the outcome depends entirely on A’s
vote and, thus, group accuracy is 0.9. When α < 0.848,
wA < wB +wC and accuracy drops to approximately 0.772.

6.2 Direct Democracy: α∗ = 0

We now show, for the topology of the delegation graph, a
setting of competencies where lower values of α are weakly
superior to higher values.

Example 2. Consider again the SC delegation graph of Fig-
ure 1. Let qA = 0.9 and qB = qC = 0.8. As before, when
α = 1, group accuracy depends solely on A and is 0.9. In
this case, however, decreasing α to the pivotal α = 0.848
causes accuracy to increase due to the relative strength of
voters B and C. When α < 0.848, accuracy increases to
approximately 0.928.

Figure 3: Accuracy in Stars and Chains delegation graphs as α varies
from 0 to 1. Each series varies scomp and sets s = 6 ns = 5, c = 3,
ccomp = 0.5, nc = 30 As α changes, the sets of gurus able to form
a majority of weight shifts in a piecewise manner. Optimal α occurs
in [0.25, 0.5]

6.3 Viscous Democracy: 0 < α∗ < 1

In contrast to the previous examples we now present a simple
example where accuracy is maximized when 0 < α < 1.
Example 3. Consider a SC delegation graph with s = 6,
scomp = 0.8, ns = 5, c = 3, ccomp = 0.5, nc = 30. That is,
6 star components each with size 5 and 3 chain components
each with size 30.

When 0 ≤ α < 0.25, the group accuracy is roughly
0.91. However, the weight of star components increases more
quickly than that of chain components as α increases. For
0.25 ≤ α ≤ 0.5, accuracy becomes approximately 0.94.
For higher values of α, the larger chain components begin
to dominate and accuracy decreases. Here, α∗ ∈ [0.25, 0.5].

Figure 3 showcases a family in which non-extreme alpha
(i.e., 0 < α∗ < 1) is optimal.

6.4 Intuition Regarding α∗

Here we have demonstrated, for the first time, the existence
of settings where 0 < α∗ < 1; using the Stars and Chains
delegation graph model. Intuitively, this graph structure leads
to interesting dynamics as α changes due to the non-linearity
in the corresponding changes in the weights of the gurus.

It is worthwhile to delve a little deeper into these graphs:
Observe that the weight of a guru vs in a star component in-
creases linearly with α: ws = 1 + nsα. On the other hand,
the weight of a guru vc in a chain component increases based
on the polynomial wc = 1 + α + α2 + α3 + ... with degree
equal to the length of the chain. While this particular del-
egation structure is somewhat contrived, we believe similar
structures may often occur in more realistic settings. In any
setting where gurus receive the majority of their delegations
at different distances from each other, there is the possibility
that α < 1 may be weakly, if not strongly, optimal.

7 Experimental Analysis
We have shown by example that there exist delegation graphs
with α∗ < 1. In this section we concentrate on the frequency
with which α∗ is below 1. We examine first the CBA topology
defined in subsection 4.3 and then consider how often delega-
tion mechanisms on other randomly-generated and real-world
social networks benefit from viscosity.



In order to understand α∗ under a wide range of settings,
each of our experiments consider voters with competencies
drawn from one of 3 distributions. These are often explored
as 9 parameterizations of each distribution:

(i) Uniform - Intervals of width 0.2 from U (0, 0.2) shifted
up to U (0.8, 1) in equal steps of 0.1.

(ii) Gaussian - µ ∈ {0.1, 0.2, ..., 0.9}, σ = 0.051

(iii) Exponential - µ ∈ {0.1, 0.2, ..., 0.9}2

7.1 Calculating Accuracy and α∗

Before we can describe the results of our experiments, we
discuss how we compute accuracy and α∗.

Monte Carlo Simulations for Group Accuracy
As discussed by [Alouf-Heffetz et al., 2022], computing ac-
curacy exactly for some liquid democracy settings is compu-
tationally impractical. Furthermore, the dynamic algorithm
for computing accuracy described previously [Becker et al.,
2021] does not work with α < 1. We use Monte Carlo sim-
ulation to estimate accuracy by running many elections with
the same parameters. Each reported accuracy result is the
proportion of 1000 elections in which a+ was successfully
elected, following the same procedure as Alouf-Heffetz et al..

Estimating the Value of α∗

Additional complexity that arises from the fact that group ac-
curacy is a piecewise function in terms of α. Therefore the
optimal α∗ is actually an interval, in terms of notation we
often refer to the upper bound of that interval. We are pri-
marily interested in identifying settings where α∗ is strictly
below 1 so we take a simple, cautious approach to estimation,
described formally in Appendix B. In short, we calculate ac-
curacy several times at 21 evenly spaced values of α in [0, 1]
(chosen to test at every interval of 0.05). Given two values of
α: αs and αt, the mean, and st. dev. of accuracy estimates at
αs and αt we say that αt is better than αs if µt−σt > µs+σs.

The best value emerging from this procedure is α∗. If no
value is strictly better than α = 1 we say that α∗ = 1. As
each experiment is run for many trials, we end up with one
value of α∗ for each trial. Thus, we typically report the mode
value of α∗ across all trials.

7.2 CBA Delegation Graphs
Figure 4 shows how α∗ changes as the average voter compe-
tence increases when voter delegations use a CBA topology.
Each point represents 50 trials with 100 voters each.

As CBA graphs are dominated by a small number of pow-
erful gurus, Figure 4 shows a phase shift when mean compe-
tence reaches roughly 0.5 At µ < 0.5 most trials find α∗ = 1,
corresponding to dominance from the large components in
the graph. At µ > 0.5, it becomes beneficial to have more
gurus affecting the outcome (due to Jury Theorem effects;

1We use the SciPy implementation of the truncated normal dis-
tribution [Burkardt, 2014].

2Since the exponential distribution does not provide an upper
bound on sampled values whenever we sample a competency value
greater than 1 we map the value to 1. This leads to a mean value
slightly lower than the original distribution, i.e µ′ = 1

λ
− e−λ

λ
.

Figure 4: (Top) The mode value of α∗ (solid) and frequency with
which α∗ is strictly below 1 (dashed) over 50 trials on randomly gen-
erated CBA delegation graphs of 100 voters. A typical CBA graph
(Bottom) is dominated by a few gurus receiving the large majority
of delegations. As α increases the most powerful gurus become dic-
tators and beneficial jury-theorem effects are lost.

more voters is beneficial when average competence is above
0.5) so α∗ approaches 0.

7.3 Viscosity in Random Networks
For each delegation mechanism and competence distribution,
we ran 300 trials on randomly generated ER and BA social
networks. Figure 5 shows how often each value of α is opti-
mal for ER networks with p = 0.1.

The heatmap immediately makes clear that α∗ takes on a
wide range of values. It is often 1, but is often below 1 as
well. In particular, we see a shift similar to the CBA topology
in subsection 7.2: when mean competence is below 0.5, α∗ is
usually 1. When voters become more competent, α∗ takes on
a wider range of values between 0 and 0.5.

Moreover, Figure 6 shows the amount by which accuracy
can be improved simply by setting α optimally. Figure 6 dis-
plays the difference between accuracy when α is set to 1 and
when it is set to the approximate optimal value. When evalu-
ating Uniform and Gaussian competence distributions, mean
competence over 0.5 show significant benefit from optimal
values of alpha while only mild improvement is seen with
Exponential competencies. This effect holds across network
type and delegation mechanism, as seen in Appendix D.2.

7.4 Delegation Graph Structure
We have examined several properties of the delegation graph
structure to see whether they have an impact on the value of
optimal alpha. From the delegation graphs of the same exper-
iments discussed in subsection 7.3 we computed the values of
several features. On this dataset, with α∗ as a target variable,



Figure 5: Distribution of α∗ across competence distributions and delegation mechanisms. 300 trials were performed for each mean voter
competence value. Each cell shows the number of trials at each mean competence value in which the corresponding α value is optimal. Results
are on an a 100 voter Erdős–Rényi network with p = 0.1 which is randomly regenerated at each trial. Similar results for Barabási–Albert
networks are shown in Appendix D.1.

Figure 6: Accuracy improvement from using optimal viscosity vs
no viscosity (α = 1) for voters on random graph models delegating
using the Max delegation mechanism. Results are averaged over 30
trials with 100 voters per experiment.

we ran a RandomForest regression. This found that no single
feature was extremely predictive of α∗ but mean competence
was the most predictive. Specifically, higher competence val-
ues were related with lower values of α∗. A list of features we
explored, and their importances is included in Appendix D.3.

7.5 Empirical Data

To strengthen the results we show in subsection 7.3 we have
run delegation experiments over several real-world networks.
The networks are described in detail in Appendix C and cover
a wide range of sizes and topologies. These experiments
show very similar distributions of α∗, suggesting that these
results are highly robust to network structure.

8 Discussion
This paper shows that viscous democracy significantly im-
proves upon liquid democracy in many realistic scenarios. On
simulated and empirical networks, when voters tend to have
moderate competence, a low value for α is likely to improve
the chance of retrieving the ground truth. Intuitively, viscos-
ity increase the number of gurus that can affect the election by
making it harder for voters to amass large amounts of power.
In contexts where there is a joint decision making objective
and voter delegation, the use of viscosity should be strongly
considered - it may provide up to 10%-20% improvement in
accuracy over standard liquid democracy.

9 Outlook
Our results show that viscosity improves decision-making
ability which opens up several avenues for future research on
why viscosity is useful and how to use this knowledge.

• Evaluating viscous democracy in other settings: Here
we concentrated on a simple epistemic model of elec-
tions in which the decision to be made is binary. Evalu-
ating the improvement from viscous democracy in more
involved settings is important. Many settings remain
open for exploration, such as multi-winner elections and
more subjective settings where there is no ground truth.

• Developing practical tools for viscous democracy: We
have shown that viscosity typically improves delegation
performance. Practically, developing tools that can effi-
ciently predict the values of α∗ across different settings
is important. Various machine learning and optimization
techniques may prove valuable for this task.
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Barabási. Statistical mechanics of complex networks. Re-
views of modern physics, 74(1):47, 2002.

[Alouf-Heffetz et al., 2022] Shiri Alouf-Heffetz, Ben Arm-
strong, Kate Larson, and Nimrod Talmon. How should we
vote? a comparison of voting systems within social net-
works. In Proceedings of IJCAI ’22, pages 31–38, 2022.

[Battiston et al., 2020] Federico Battiston, Giulia Cencetti,
Iacopo Iacopini, Vito Latora, Maxime Lucas, Alice Pata-
nia, Jean-Gabriel Young, and Giovanni Petri. Networks
beyond pairwise interactions: Structure and dynamics.
Physics Reports, 874:1–92, 2020.

[Becker et al., 2021] Ruben Becker, Gianlorenzo D’Angelo,
Esmaeil Delfaraz, and Hugo Gilbert. When can liquid
democracy unveil the truth? CoRR, abs/2104.01828, 2021.

[Berkhin, 2005] Pavel Berkhin. A survey on pagerank com-
puting. Internet mathematics, 2(1):73–120, 2005.

[Bloembergen et al., 2019] Daan Bloembergen, Davide
Grossi, and Martin Lackner. On rational delegations
in liquid democracy. In Proceedings of AAAI ’19’,
volume 33, pages 1796–1803, 2019.

[Blum and Zuber, 2016] Christian Blum and Christina Isabel
Zuber. Liquid democracy: Potentials, problems, and per-
spectives. Journal of Political Philosophy, 24(2):162–182,
2016.

[Boldi et al., 2011] Paolo Boldi, Francesco Bonchi, Carlos
Castillo, and Sebastiano Vigna. Viscous democracy for
social networks. Communications of the ACM, 54(6):129–
137, 2011.

[Boldi et al., 2015] Paolo Boldi, Corrado Monti, Massimo
Santini, and Sebastiano Vigna. Liquid fm: recommend-
ing music through viscous democracy. arXiv preprint
arXiv:1503.08604, 2015.

[Brill and Talmon, 2018] Markus Brill and Nimrod Talmon.
Pairwise liquid democracy. In Proceedings of IJCAI ’18,
volume 18, pages 137–143, 2018.

[Burkardt, 2014] John Burkardt. The truncated normal dis-
tribution. Department of Scientific Computing Website,
Florida State University, pages 1–35, 2014.

[Caragiannis and Micha, 2019] Ioannis Caragiannis and Evi
Micha. A contribution to the critique of liquid democracy.
In IJCAI, pages 116–122, 2019.

[Dey et al., 2021] Palash Dey, Arnab Maiti, and Amatya
Sharma. On parameterized complexity of liquid democ-
racy. In Proceedings of CALDAM ’21, pages 83–94, 2021.

[Erdos et al., 1960] Paul Erdos, Alfréd Rényi, et al. On the
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A Delegation Functions
• Max: Each delegating voter vi delegates to their most

competent neighbour.

pmax(vi, vj) =

{
1 qj = argmaxj ∈ {qj ∈ Q|(i, j) ∈ E}
0 otherwise

• Random Better: Each delegating voter, vi, selects one
of their neighbours uniformly at random from the set of
neighbours with higher competence. That is, vi dele-
gates to a random voter from the set N+

G (i) where:

N+
G (i) = {j ∈ V | (i, j) ∈ E , qj > qi}

prand better(vi, vj) =

{
1

|N+(vi)| j ∈ N+(vi)

0 otherwise

• Proportional Better: Delegators delegate to a neigh-
bour with higher competence, however, the chance of
delegating to a neighbour is directly correlated with the
difference between their guru’s competence and that of
the delegator.

pprop better(vi, vj) ∝

{
qd∗(j)−qi∑

vk∈N+(vi)
qd∗(k)−qi

j ∈ N+(vi)

0 otherwise

• Proportional Weighted: Delegation probabilities are
based on both the competence difference between del-
egator and delegatee, as well as the weight of the repre-
sentative ultimately being delegated to. A lower weight
leads to a higher delegation probability.

pprop weighted(vi, vj) ∝
{
♣ j ∈ N+(vi)

0 otherwise

where ♣ := 1
wd∗(j)

qd∗(j)−qi∑
vk∈N+(vi)

qd∗(k)−qi
.

B Estimating α∗

Algorithm 2 Estimating α∗

Input: t, k,Q,D

1: α∗, µmax, σmax ← 1, 1, 1
2: A← t points sampled evenly from [0, 1]
3: for at ∈ A do
4: α← at
5: for i ∈ 0..k do
6: acct,i ← Acc(α,Q,D)
7: end for
8: µt, σt ← mean(acct,−), st. dev.(acct,−)
9: if µt − σt > µmax + σmax then

10: α∗, µmax, σmax ← α, µt, σt

11: end if
12: end for

C Description of Real-World Networks

Network Nodes Edges Source

celegans 296 2359 [Watts and Strogatz, 1998]
dolphins 62 159 [Lusseau et al., 2003]
email 1133 10903 [Guimera et al., 2003]
jazz 198 5484 [Gleiser and Danon, 2003]
netscience 1589 2700 [Newman, 2006]
karate 34 78 [Zachary, 1977]
lesmis 77 254 [Knuth, 1993]

Table 1: The real-world networks used in our analysis.

D Supplemental Experiment Results
D.1 Distribution of Optimal α∗



Figure 7: Distribution of α∗ across competence distributions and delegation mechanisms. 300 trials were performed for each mean voter
competence value. Each cell shows the fraction of trials at each mean competence value in which the corresponding α value is optimal.
Results are on a 100 voter Barabási–Albert network with m = 10 which is randomly regenerated at each trial.

Figure 8: Distribution of α∗ across competence distributions and delegation mechanisms. 30 trials were performed for each mean voter
competence value. Each cell shows the fraction of trials at each mean competence value in which the corresponding α value is optimal.
Results are shown for the celegansneural network.



Figure 9: Distribution of α∗ across competence distributions and delegation mechanisms. 30 trials were performed for each mean voter
competence value. Each cell shows the fraction of trials at each mean competence value in which the corresponding α value is optimal.
Results are shown for the dolphins network.

Figure 10: Distribution of α∗ across competence distributions and delegation mechanisms. 30 trials were performed for each mean voter
competence value. Each cell shows the fraction of trials at each mean competence value in which the corresponding α value is optimal.
Results are shown for the email network.



Figure 11: Distribution of α∗ across competence distributions and delegation mechanisms. 30 trials were performed for each mean voter
competence value. Each cell shows the fraction of trials at each mean competence value in which the corresponding α value is optimal.
Results are shown for the jazz network.

Figure 12: Distribution of α∗ across competence distributions and delegation mechanisms. 30 trials were performed for each mean voter
competence value. Each cell shows the fraction of trials at each mean competence value in which the corresponding α value is optimal.
Results are shown for the karate network.



Figure 13: Distribution of α∗ across competence distributions and delegation mechanisms. 30 trials were performed for each mean voter
competence value. Each cell shows the fraction of trials at each mean competence value in which the corresponding α value is optimal.
Results are shown for the lesmis network.

Figure 14: Distribution of α∗ across competence distributions and delegation mechanisms. 30 trials were performed for each mean voter
competence value. Each cell shows the fraction of trials at each mean competence value in which the corresponding α value is optimal.
Results are shown for the netscience network.



D.2 Accuracy Improvement from α∗

Figure 15: Accuracy improvement from using optimal viscosity vs
no viscosity (α = 1) for voters on random graph models delegating
using the Random Better mechanism. Results are averaged over 30
trials with 100 voters per experiment.

Figure 16: Accuracy improvement from using optimal viscosity vs
no viscosity (α = 1) for voters on random graph models delegating
using the Proportional Better mechanism. Results are averaged
over 30 trials with 100 voters per experiment.

Figure 17: Accuracy improvement from using optimal viscosity vs
no viscosity (α = 1) for voters on random graph models delegating
using the Proportional Weighted mechanism. Results are averaged
over 30 trials with 100 voters per experiment.

D.3 Feature Importance
We used a Random Forest regression model to explore
whether any features of an election were predictive of α∗. We
assembled values of the features listed below along with their
corresponding α∗. These values were used to train a sci-kit
learn RandomForestRegressor model [Pedregosa et al., 2011]
which reached an R2 value of approximately 0.6, indicating
the features had some predictive power but very little. We
then computed the relative importance of each feature in the
model, shown in Figure 18. Mean voter competence is most
predictive of α∗ and has an inverse relationship: Higher mean
competence loosely indicates a lower value of α∗.

The features used in this regression are described below:

• Chain Length Gini - For each guru, measure the distance
from the guru to each of its delegators. Take the Gini
index of all these lengths.

• Grofman Distance - The ℓ2 distance of the current
weight distribution of the gurus compared to the ideal
wi ∼ log

(
qi

1−qi

)
(see [Grofman et al., 1983]).

• Guru Weight Gini - The Gini index of the guru weights.

• Mean Competence - The mean of the underlying com-
petence distribution.

• Network Type - Possible values: BA and ER.



• Competence Distribution - Possible values: Uniform,
Gaussian or Exponential.

• Delegation Mechanism - Possible values: Max, Propor-
tional Better, Random Better, Proportional Weighted.

Figure 18: Here we plotted the feature importance given a classifi-
cation of α using random forest from the previous experiments in
Section 7.
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