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ABSTRACT
Viscous democracy is a generalization of liquid democracy, a so-
cial choice framework in which voters may transitively delegate
their votes. In viscous democracy, a "viscosity" factor decreases the
weight of a delegation the further it travels, reducing the chance of
excessive weight flowing between ideologically misaligned voters.
We demonstrate that viscous democracy often significantly improves
the quality of group decision-making over liquid democracy. We
first show that finding optimal delegations within a viscous setting
is NP-hard. However, simulations allow us to explore the practical
effects of viscosity. Across social network structures, competence
distributions, and delegation mechanisms we find high viscosity
reduces the chance of “super-voters” attaining large amounts of
weight and increases the number of voters that are able to affect the
outcome of elections. This, in turn, improves group accuracy as a
whole. As a result, we argue that viscosity should be considered a
core component of liquid democracy.
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1 INTRODUCTION
Liquid democracy [7], an evolving concept in democratic theory,
seeks to address the limitations of traditional direct and represen-
tative democracy by enabling flexible delegation of voting power.
To do so, in liquid democracy, individuals choose between cast-
ing their votes directly or delegating their voting power to another
voter of their choice. In contrast to simple proxy voting [18], del-
egations are transitive and a delegation may “flow” through many
voters. By merging the strengths of direct democracy and repre-
sentative decision-making, liquid democracy enhances epistemic
decision-making by incorporating diverse perspectives and informed
opinions.

We study a generalization of liquid democracy – viscous democ-
racy [8] – which effectively limits the maximum weight voters can

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
Appears at the 6th Games, Agents, and Incentives Workshop (GAIW-24). Held as
part of the Workshops at the 22st International Conference on Autonomous Agents
and Multiagent Systems., Abramowitz, Aziz, Dickerson, Hosseini, Mattei, Obraztsova,
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attain. In this variant, vote weights decrease exponentially the fur-
ther a delegation travels. This “viscosity” in the computation of
the vote weights has its roots in random walks and the PageRank
algorithm [5]. Viscous democracy offers a compromise between
the advantages of delegation and direct voting, potentially curbing
excessive concentration of power while maintaining the flexibility
core to liquid democracy.

Here, we are interested in quantifying the potential benefit of
adding viscosity to liquid democracy. A pivotal factor in this as-
sessment is the dampening factor or “viscosity” – denoted by 𝛼

throughout the paper – which governs the rate of weight decay as
delegation chains lengthen. As we show, the influence of 𝛼 extends
beyond decision quality, affecting the overall structure of those del-
egation graphs that achieve a high quality of decision making. We
are interested in identifying suitable values of 𝛼 generally and for
specific settings. Specifically, we seek to unravel the relationship
between the value of 𝛼 and the quality of decision making, as well
as exploring how 𝛼 shapes the topology of optimal delegations.

In this paper we adopt a dual approach, employing analytical
and theoretical methodologies, as well as computer-based simula-
tions. Theoretical analyses provide insights into the fundamental
dynamics and properties of viscous democracy; simulations, on the
other hand, offer a tangible platform for observing the empirical
behavior of viscous democracy under varied conditions, facilitating
a more realistic assessment of its outcomes and interactions. The
combination of these approaches enriches our understanding of the
complex interactions within the system of viscous democracy.

We view our work as fundamental to the better understanding
of viscous democracy; as such, it paves the way to tools that can
optimally parameterize viscous democracy in different settings, set-
ting the dampening parameter 𝛼 based on the specific properties of
the setting at hand. As we show, the improvement to the quality of
decision making from viscosity is frequently significant.

REMARK 1. The introduction of viscosity to liquid democracy is
a deviation from the principle of “one person, one vote” which, there-
fore, may render it inappropriate for democratic contexts in which
equality in voting is essential [32]. We show, however, that it does
prove advantageous in other applications; in particular, in those that
prioritize prediction accuracy (e.g., a group prediction regarding
the price of some stock), group recommendation (the application
discussed alongside the introduction of viscous democracy [8]), and
other, general collaborative settings (e.g., a collaborative venture
capital such as The DAO [22]). In these scenarios – due to vary-
ing levels of competence in the population around different topics
of discussion – the nuanced decision-making facilitated by viscos-
ity enhances collective intelligence, allowing for better decision
making.



2 RELATED WORK
By now, there is a relatively large corpus of literature on liquid
democracy. This includes works that study liquid democracy from
a political science perspective [7, 30]; from an algorithmic point of
view [12, 13, 24]; from a game-theoretic point of view [6, 15, 35];
and from an agenda aiming to increase the expressive power that is
granted to voters [10, 23].

This work concentrates on the epistemic approach to social choice;
we assume some ground truth of the decision to be made and evaluate
the accuracy of the voting system at revealing ground truth using a
common model for epistemic liquid democracy [2, 12, 21, 24]. Prior
work on this setting has shown that optimizing delegations in the non-
viscous setting is NP-hard [12] and that no delegation mechanism
where voters use only local information from their social network can
guarantee an improvement to group accuracy [24]. Experimentally,
it has been shown that (non-viscous) liquid democracy frequently
outperforms direct voting at identifying ground truth [2].

Viscous democracy is relatively under-studied within liquid democ-
racy. The original paper on the topic [8] establishes some intuition
and a relation to the PageRank algorithm [5]; but there is no analysis
regarding the effect of one specific value of the dampening factor
compared to another, nor is there analysis discussing how to choose
the factor. Viscous democracy was also applied as a setting for group
recommendation system [9].

3 MODEL
Our formal model describes how voters are embedded in an underly-
ing social network, how they may delegate, and how group decisions
are ultimately made.

3.1 Delegation Graphs
We adopt a basic epistemic social choice setting with 𝑛 voters, 𝑉 =

{𝑣1, . . . , 𝑣𝑛}, and two alternatives 𝐴 = {𝑎+, 𝑎−}. We assume that 𝑎+

is an objectively correct outcome that all voters collectively aim
to elect. Each voter 𝑣𝑖 ∈ 𝑉 has a competency level 𝑞𝑖 ∈ 𝑄 in the
range [0, 1] that corresponds to the probability that 𝑣𝑖 would vote
“correctly” (i.e., would vote for 𝑎+). Voters are connected via an
underlying social network 𝐺 = (𝑉 , 𝐸) with a set of undirected edges
𝐸 representing the connections between voters (where delegations
can occur as direct arcs only along these connections).

Our model generalizes liquid democracy – a system enabling tran-
sitive delegations. Each voter 𝑣𝑖 is able to perform one of two actions:
They may vote directly, as above, supporting 𝑎+ with probability 𝑞𝑖 ,
or they may delegate their vote to a voter in their set of neighbours,
𝑁𝐺 (𝑖) = { 𝑗 ∈ 𝑉 | (𝑖, 𝑗) ∈ 𝐸}. If a voter votes directly, then we refer
to them as a guru and model them as delegating to themselves.

A delegation function 𝑑 : 𝑉 → 𝑉 outputs the delegation of each
voter. 𝑑 (𝑣𝑖 ) = 𝑣 𝑗 indicates that 𝑣𝑖 delegates to 𝑣 𝑗 . Delegation applies
transitively so that a delegation might “travel” several hops before
reaching a guru. 𝑑∗ (𝑣𝑖 ) refers to the repeated application of 𝑑 (𝑣𝑖 )
until a self-delegation (i.e. a guru) is reached. The guru of 𝑣𝑖 is 𝑑∗ (𝑣𝑖 )
and denote the set of all gurus as G(𝑉 ). We disallow any delegation
from 𝑣𝑖 to 𝑣 𝑗 that would result in a cycle (such a delegation is not
made; 𝑣𝑖 attempts to make another delegation on the subgraph of
𝐺 from which all edges connected to 𝑣 𝑗 have been removed). This
is done to prevent loss of votes within the voting process. In our

experiments we randomly choose a fixed proportion of voters to
delegate while the remainder vote directly.

Note that a delegation function induces a directed subgraph of 𝐺
containing (directed versions of the) edges in 𝐸 only when a del-
egation flows between the two nodes of an edge. We call this a
delegation graph of 𝐺 , denoted 𝐷 = (𝑉 , {(𝑖, 𝑗) ∈ 𝐸 |𝑑 (𝑖) = 𝑗}). A
delegation graph can be conceived of as a forest of directed trees,
where all edges in each tree flow towards the singular guru in that
tree.

3.2 Vote Weights
In “traditional” liquid democracy, the weight of each guru is equal
to the number of delegations it receives, either directly or indirectly.
This paper builds upon a model introduced by Boldi et al. referred
to as viscous democracy [8]. Each edge that a delegation travels
reduces its weight by a constant dampening factor 𝛼 ∈ [0, 1], also
referred to as the viscosity. Thus, the weight of each voter 𝑣𝑖 is,

𝑤𝑖 =

{
0 if 𝑣𝑖 ∉ G(𝑉 )∑
𝑝∈Path(−,𝑖 ) 𝛼

|𝑝 | otherwise

where Path (−, 𝑖) denotes all paths of delegations that reach 𝑣𝑖 .
Note the following:

• When 𝛼 = 1, viscous democracy reduces to the standard
liquid democracy setting.
• At lower values of 𝛼 , guru weights change based upon the

structure of the delegation graph. Weights of voters that are
further away from their guru decrease more than the weights
of voters close to the guru.
• As there are no cycles, there is at most one path between any

two voters.

3.3 Group Accuracy
As there are only two alternatives, we use weighted plurality vot-
ing (following May’s theorem [28]) to determine the winner of an
election. Specifically, each guru selects one alternative, based upon
their competence, and commits all of their weight to supporting that
alternative. The alternative receiving the most total weight is the
winner. The probability that 𝑎+ will be selected as the winner is
referred to as group accuracy, or, simply accuracy.

Accuracy is a function of the delegations and the voter competen-
cies but, crucially, it is also affected by 𝛼 . We denote the accuracy
of given viscosity, competencies, and delegations as 𝐴𝑐𝑐 (𝛼,𝑄, 𝐷).
We refer to the value of 𝛼 that maximizes group accuracy as 𝛼∗. The
existence of 0 < 𝛼∗ < 1 and the dynamics of 𝛼∗ are a major focus
of this paper.

We can now formally specify an election by either of two forms
(we use these interchangeably, as the first form implies the second):

(1) E = (𝑄,𝐺,𝑑): Here, an election is a combination of voter
competencies, an underlying social network, and a delegation
function which may be used to determine a delegation graph
𝐷; or

(2) E = (𝑄, 𝐷): Here, an election consists of voter competencies
and an already existing delegation graph.
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Figure 1: A Stars and Chains delegation graph. The value of 𝛼∗
depends greatly upon the competence values assigned to each of
gurus 𝐴, 𝐵, and 𝐶.

4 FAMILIES OF DELEGATION GRAPHS
Throughout this paper we explore several different families of delega-
tion graphs of two varieties: We first describe delegation graphs that
are induced by the application of a delegation function to voters on
a social network. Second, we introduce two simple delegation graph
models that are constructed directly, without a specific delegation
function, to serve as illustrative examples.

4.1 Social Networks
Our experiments explore two types of underlying social networks
𝐺 that voters exist upon: both empirical and artificially-generated
networks. The empirical networks we consider are collected from a
variety of sources and detailed in Appendix C.

To generate artificial networks we use two well-studied probabilis-
tic models that are often used to replicate properties of real-world
social networks [25]: Erdős–Rényi (ER) and Barabási–Albert (BA)
networks. Both of these models are parameterized by the number of
nodes and a parameter controlling their edge density [1, 14]. Unless
stated otherwise, voters are placed on social networks uniformly at
random.

4.2 Delegation Functions
Delegation functions use a social network and the competence of
each voter to determine, for each delegating voter, to whom they
delegate. We define delegation probability functions 𝑝 (𝑣𝑖 , 𝑣 𝑗 ) as giv-
ing the probability that 𝑣𝑖 will delegate to 𝑣 𝑗 . A delegation function
𝑑 specifies a delegate for each voter based upon 𝑝 (𝑣𝑖 , 𝑣 𝑗 ). When a
delegation function finds no valid delegations, a would-be delegator
becomes a guru. Our experiments consider the following delegation
probability functions, defined formally in Appendix A:

• Max: Each delegating voter delegates to their most competent
neighbour.
• Random Better: Each delegating voter delegates to a neigh-

bour more competent than themselves chosen with uniformly
random probability.
• Proportional Better: Each delegating voter delegates to a

neighbour more competent than themselves chosen with prob-
ability proportional to the competence of each potential guru.
• Proportional Weighted: Each delegating voter delegates to a

neighbour more competent than themselves with probability
proportional to the competence and weight of each potential
guru, such that gurus with higher weight are less likely to
receive delegations.

Algorithm 1 Competence-Based Attachment (CBA)
Input: 𝑉 ,𝑄,G

1: 𝑆 ← G
2: 𝐸 ← ∅
3: 𝐷 ← (𝑉 , 𝐸)
4: while 𝑆 ≠ 𝑉 do
5: Select one voter 𝑣𝑖 ∈ 𝑉 \ 𝑆 uniformly at random.
6: Select one voter 𝑣 𝑗 ∈ 𝑆 with probability proportional to its

relative competence; 𝑃 (𝑣 𝑗 ) ∝
𝑞 𝑗∑

𝑣𝑘 ∈𝑆
𝑞𝑘

7: Attach: 𝐸 ← 𝐸 ∪ (𝑣𝑖 , 𝑣 𝑗 ).
8: Update: 𝑆 ← 𝑆 ∪ {𝑣𝑖 }.
9: end while

4.3 Delegation Graph Models
We also explore two directly-constructed graph families which we
use to demonstrate the possible effects of changing viscosity. The
first model is a natural adaptation of the model of preferential at-
tachment while the second model generates very simple graphs that
highlight some basic topological properties that affect the optimal
viscosity.
• Competence-Based Attachment (CBA): This model creates

a delegation graph by applying the idea of preferential attach-
ment to voter competencies [3]. Given voter competencies
and some set of gurus the remaining voters select a delegate
based upon the relative competence of each potential dele-
gate. For completeness, Algorithm 1 outlines the procedure
in more detail.
• Stars and Chains (SC): A basic structure parameterized by
(𝑠, 𝑠comp, 𝑛𝑠 , 𝑐, 𝑐comp, 𝑛𝑐 ). This model constructs a delegation
graph consisting of 𝑠 small star components each with 𝑛𝑠 − 1
delegators and 1 guru, and 𝑐 large chains with 𝑛𝑐 − 1 delega-
tors. Gurus are thus located at the center of the stars and at one
end of the chains. Gurus in star and chain components have
competence 𝑐comp and 𝑠comp, respectively. Each chain compo-
nent should have more voters than are in all star components
combined, that is 𝑛𝑐 > 𝑠𝑛𝑠 (typically we have considered
settings where 𝑛𝑐 = 𝑠𝑛𝑠 + 1 but that is not required). Figure 1
visualizes a simple SC delegation graph.

5 OPTIMAL DELEGATION GRAPHS
Here we provide bounds on the complexity of finding delegations
within a viscous setting that maximizes group accuracy. Informally,
given a social network and some value of 𝛼 , we are interested in the
combinatorial problem of picking for each voter whether she will
vote directly or whether she will delegate to some other voter, and,
if so, to whom.

DEFINITION 1. In the OPTIMAL DELEGATION GRAPH (ODG)
problem we are given a network of voters 𝐺 = (𝑉 , 𝐸) and the task
is to find a subgraph 𝐷 = (𝑉 , 𝐸𝐷 ⊆ 𝐸) that is a viable delegation
graph of 𝐺 (i.e. there are no cycles in 𝐷) and which maximizes the
accuracy.

Next we analyze the computational complexity of ODG. First,
note that, for the case of 𝛼 , we can solve ODG in polynomial time.



THEOREM 1. For 𝛼 = 0, ODG is in P.

PROOF. Observe that, for 𝛼 = 0, setting a voter to delegate to
some other voter effectively removes that voter, as no weight is trans-
ferred through delegation. Thus, to solve ODG we can iterate over
𝑘 ∈ [𝑛] ∪ {0}, which is the number of voters to remove. In particular,
for each 𝑘 ∈ [𝑛] ∪ {0}, look for the 𝑘 voters with the lowest accu-
racy and remove them (i.e. have them make arbitrary delegations).
Now, compute the accuracy (this can be done in polynomial time
using dynamic programming [4]). Finally, select the 𝑘 for which the
accuracy is the highest.

As all voters are equally weighted, it is always strictly better to
include a more competent voter in place of a less competent voter
and removing some number of least competent voters will solve
ODG. □

For 𝛼 = 1, however, Caragiannis and Micha (2019) have shown
that ODG is NP-hard.

COROLLARY 1. For 𝛼 = 1, ODG is NP-hard. Furthermore, for
this case, it is also NP-hard to approximate ODG to within a factor
of 1/16 [12].

Below, we provide the first results on the complexity of ODG for
0 < 𝛼 < 1.

THEOREM 2. For 𝛼 = 1
𝑚 ,𝑚 ∈ N, ODG is NP-Hard.

PROOF. The proof follows a reduction from the NP-hard problem
Restricted Exact Cover by 3-Sets (X3C) [17] to 𝑂𝐷𝐺 . An instance
of X3C consists of a set 𝑋 = {𝑥1, .., 𝑥3𝑛}, a family F = {𝑆1, .., 𝑆3𝑛}
where each set 𝑆𝑖 has 3 elements from 𝑋 , and each element from 𝑋

appears in exactly 3 sets from F . The task is to decide whether a
subfamily F ′ ⊂ F such that 𝑋 =

⋃
𝑆 𝑗

𝑆 𝑗 ∈F′
and 𝑆 𝑗 ∩ 𝑆𝑖 = ∅ exists.

We will construct the following instance for the ODG problem
(see Figure 2):
• For each set 𝑆1, .., 𝑆3𝑛 we will have a voter 𝑆𝑖 with competence
𝑞𝑆𝑖 > 0.5.
• For each element 𝑥𝑖 ∈ 𝑋 we have 3 sets 𝑆𝑖1 , 𝑆𝑖2 , 𝑆𝑖3 that 𝑥𝑖

appears in. We connect an outgoing edge to each 𝑆𝑖 from 𝑥𝑖 .
The competence of 𝑥𝑖 is set to 𝑞𝑥𝑖 = 0,∀𝑖 ∈ 1, .., 3𝑛.
• Lastly, we have a set of dummy voters 𝑑1, .., 𝑑2𝑛 with com-

petence 𝑞𝑑 = 0 that are connected to all the the set voters
𝑆1, .., 𝑆3𝑛 with outgoing edges. Each dummy voter has pe-
ripherally a set of dummy voters 𝑒𝑖1, .., 𝑒

𝑖
𝑧 that are connected

to it. Each has competence of 𝑞𝑒 = 0, designed to incen-
tivize the dummy voters to delegate otherwise they contribute
negatively to the outcome of an election.

This completes the description of the reduction. Below we prove
the two directions for correctness.

=⇒ Given a solution for the Restricted 3-Set Exact Cover
F ′ =

{
𝑆 𝑗1 , 𝑆 𝑗2 .., 𝑆 𝑗𝑛

}
, we shall delegate each 𝑥𝑖 to its corresponding

𝑆 𝑗 it appears in F ′. There is only one such set 𝑆 𝑗ℓ because F ′ is an
exact cover. Each of these 𝑆 𝑗 in layer 2 (see figure 2) voters now has
a weight of 1 + 3𝛼 : weight from the node itself plus weight from
three delegators, 𝑥 𝑗1 , 𝑥 𝑗2 , 𝑥 𝑗3 , that are each one hop away (and thus
have their weight reduced by the viscosity factor). For the remaining
2𝑛 sets in layer 2 we shall delegate one dummy voter from 𝑑1, .., 𝑑2𝑛

to each set in layer 2 that is 𝑆𝑟 ∈ F \ F ′, the matching is arbitrarily.
Since each set 𝑆𝑟 receives one dummy 𝑑 voter delegation and further
delegations from 𝑧 peripheral 𝑒 voters that travel an extra hop. 𝑆𝑟
has a total weight of 1 + 𝛼 + 𝑧 · 𝛼2. Thus, we set 𝑧 = 2

𝛼 then all the
𝑆𝑖 voters in the central layer have the same weight, 𝑤∗ = 1 + 3𝛼 . We
know that this corresponds to the optimal weight distribution due
to a direct application of Condorcet’s Jury Theorem [19]: Each 𝑆𝑖
has 𝑞𝑆𝑖 > 0.5 so more active 𝑆𝑖 will monotonically increase group
accuracy, and optimal weighted voting for when all 𝑆𝑖 have the same
competence is equal weight distribution.
⇐= Next, we show that optimal delegation indeed leads to an

exact cover. First we have to consider that the only voters that would
be active are the {𝑆𝑖 }, since they are solely the ones with positive
competence. They all have the same competence, that is larger then
0.5, so an optimal outcome would take place when they all have
equal weight, again (see [19]). Distributing the total weight equally
would mean each set voter 𝑆𝑖 would get one dummy voter 𝑑 𝑗 with its
associated voters 𝑒𝑖1, .., 𝑒

𝑖
𝑧 or three delegations from 𝑥1, .., 𝑥3𝑛 voters.

Since any other combination of voter delegations would mean some
voters would receive excess weight and at least one voter would
end up with less weight, thus causing a deviation from the optimal
weight of 𝑤∗ = 1 + 3𝛼 . Note that we could achieve lower weight
for 𝑑𝑖 if any of the peripheral 𝑒𝑖

𝑗
did not delegate, but since their

competence is zero they must not be active voters in the optimal
delegation graph as that would reduce group accuracy. Next we look
at the sets 𝑆𝑖 that have incoming delegations from the first layer of
𝑥𝑖 and select those 𝑆𝑖 ’s to be our cover F ′, we know that it satisfies
all the condition to be a restricted exact 3 set cover for 𝑋 . □

REMARK 2. Theorem 2 could be extended to any rational 𝛼 = 𝑘
𝑚

by reducing from the 𝑋 (𝑘 + 1)𝐶 problem (i.e., restricted exact cover
with sets containing 𝑘 + 1 elements, where each element 𝑥 appear in
exactly 𝑘 + 1 sets). The construction follows similar steps; we then
set 𝑧 =𝑚, which causes the optimal weight to be𝑤∗ = 1+ (𝑘 + 1) ·𝛼
for each set.

6 SOME PATHOLOGICAL CASES
REGARDING 𝛼∗

We now concentrate on whether viscosity provides actual benefits
to accuracy over liquid democracy. The standard model of liquid
democracy used in most prior work only explores the situation where
𝛼 = 1. In contrast, recall that 𝛼 = 0 is a form of direct democracy
where delegated votes become irrelevant as their weight is 0 and
all gurus have equal weight. Viscous democracy lies in the middle
between these two settings with 0 < 𝛼 < 1. In this section we show
that there exist many parameterizations of delegation graphs for
which a different one of direct, liquid, and viscous democracy are
strictly beneficial.

Note that accuracy is a piecewise function with respect to 𝛼 : i.e.,
accuracy changes only when 𝛼 causes a change in the sets of gurus
that make up a majority of weight. This means that, typically, 𝛼∗

is not a unique value but rather a range of values. However, for
simplicity we typically refer to it as a single value.



Figure 2: Illustration of the reduction described in the proof
of Theorem 2. There are 4 layers of nodes, the bottom layer is
corresponding to elements from the set 𝑋 , the second layer are
the sets 𝑆1, .., 𝑆3𝑛 . The third layer is dummy voters {𝑑𝑖 }, and the
fourth layer is an additional set of dummy voters connected to
the third layer in order to adjust the weights.

6.1 Liquid Democracy: 𝛼∗ = 1
We first show that there exist settings in which liquid democracy
(i.e., where 𝛼∗ = 1) leads to optimal accuracy. Below we present an
example where increasing 𝛼 always weakly increases accuracy.

EXAMPLE 1. Consider the delegation graph in Figure 1 with
3 chains of voters. Let 𝑞𝐴 = 0.9 and 𝑞𝐵 = 𝑞𝐶 = 0.4. When 𝛼 = 1,
𝑤𝐴 = 5 and the outcome depends entirely on 𝐴’s vote and, thus,
group accuracy is 0.9. When 𝛼 < 0.848,𝑤𝐴 < 𝑤𝐵+𝑤𝐶 and accuracy
drops to approximately 0.772.

6.2 Direct Democracy: 𝛼∗ = 0
We now show, for the topology of the delegation graph, a setting of
competencies where lower values of 𝛼 are weakly superior to higher
values.

EXAMPLE 2. Consider again the SC delegation graph of Fig-
ure 1. Let 𝑞𝐴 = 0.9 and 𝑞𝐵 = 𝑞𝐶 = 0.8. As before, when 𝛼 = 1,
group accuracy depends solely on 𝐴 and is 0.9. In this case, however,
decreasing 𝛼 to the pivotal 𝛼 = 0.848 causes accuracy to increase
due to the relative strength of voters 𝐵 and 𝐶. When 𝛼 < 0.848,
accuracy increases to approximately 0.928.

6.3 Viscous Democracy: 0 < 𝛼∗ < 1
In contrast to the previous examples we now present a simple exam-
ple where accuracy is maximized when 0 < 𝛼 < 1.

EXAMPLE 3. Consider a SC delegation graph with 𝑠 = 6, 𝑠comp =

0.8, 𝑛𝑠 = 5, 𝑐 = 3, 𝑐comp = 0.5, 𝑛𝑐 = 30. That is, 6 star components
each with size 5 and 3 chain components each with size 30.

When 0 ≤ 𝛼 < 0.25, the group accuracy is roughly 0.91. However,
the weight of star components increases more quickly than that of
chain components as 𝛼 increases. For 0.25 ≤ 𝛼 ≤ 0.5, accuracy
becomes approximately 0.94. For higher values of 𝛼 , the larger

Figure 3: Accuracy in Stars and Chains delegation graphs as 𝛼
varies from 0 to 1. Each series varies 𝑠comp and sets 𝑠 = 6, 𝑛𝑠 = 5,
𝑐 = 3, 𝑐comp = 0.5, 𝑛𝑐 = As 𝛼 changes, the sets of gurus able to
form a majority of weight shifts in a piecewise manner. Optimal
𝛼 occurs in [0.25, 0.5]

chain components begin to dominate and accuracy decreases. Here,
𝛼∗ ∈ [0.25, 0.5].

Figure 3 showcases a family in which non-extreme alpha (i.e.,
0 < 𝛼∗ < 1) is optimal.

6.4 Intuition Regarding 𝛼∗

Here we have demonstrated, for the first time, the existence of set-
tings where 0 < 𝛼∗ < 1; using the Stars and Chains delegation graph
model. Intuitively, this graph structure leads to interesting dynamics
as 𝛼 changes due to the non-linearity in the corresponding changes
in the weights of the gurus.

It is worthwhile to delve a little deeper into these graphs: Observe
that the weight of a guru 𝑣𝑠 in a star component increases linearly
with 𝛼 : 𝑤𝑠 = 1 + 𝑛𝑠𝛼 . On the other hand, the weight of a guru
𝑣𝑐 in a chain component increases based on the polynomial 𝑤𝑐 =

1 + 𝛼 + 𝛼2 + 𝛼3 + ... with degree equal to the length of the chain.
While this particular delegation structure is somewhat contrived, we
believe similar structures may often occur in more realistic settings.
In any setting where gurus receive the majority of their delegations
at different distances from each other, there is the possibility that
𝛼 < 1 may be weakly, if not strongly, optimal.

7 EXPERIMENTAL ANALYSIS
We have shown by example that there exist delegation graphs with
𝛼∗ < 1. In this section we concentrate on the frequency with which
𝛼∗ is below 1. We examine first the CBA topology defined in sub-
section 4.3 and then consider how often delegation mechanisms on
other randomly-generated and real-world social networks benefit
from viscosity.

In order to understand 𝛼∗ under a wide range of settings, each of
our experiments consider voters with competencies drawn from one
of 3 distributions. These are often explored as 9 parameterizations
of each distribution:

(i) Uniform - Intervals of width 0.2 from 𝑈 (0, 0.2) shifted up to
𝑈 (0.8, 1) in equal steps of 0.1.

(ii) Gaussian - ` ∈ {0.1, 0.2, ..., 0.9}, 𝜎 = 0.051

1We use the SciPy implementation of the truncated normal distribution [11].



(iii) Exponential - ` ∈ {0.1, 0.2, ..., 0.9}2

7.1 Calculating Accuracy and 𝛼∗

Before we can describe the results of our experiments, we discuss
how we compute accuracy and 𝛼∗.

7.1.1 Monte Carlo Simulations for Group Accuracy. As dis-
cussed by Alouf-Heffetz et al., computing accuracy exactly for some
liquid democracy settings is computationally impractical [2]. Fur-
thermore, the dynamic algorithm for computing accuracy described
by Becker et al. [4] does not work with 𝛼 < 1. As a result, we use
Monte Carlo simulation to estimate accuracy by running many elec-
tions with the same set of parameters. Each reported accuracy result
is the fraction out of 1000 elections in which 𝑎+ was successfully
elected, following the same procedure as Alouf-Heffetz et al. [2].

7.1.2 Estimating the Value of 𝛼∗. Additional complexity arises
from the fact that group accuracy is a piecewise function in terms
of 𝛼 . Therefore the optimal 𝛼∗ is actually an interval, in terms of
notation we often refer to the upper bound of that interval. We are
primarily interested in identifying settings where 𝛼∗ is strictly below
1 so we take a simple, cautious approach to estimation, described
formally in Appendix B. In short, we calculate accuracy several
times at 21 evenly spaced values of 𝛼 in [0, 1] (chosen to test at
every interval of 0.05). Given two values of 𝛼 : 𝛼𝑠 and 𝛼𝑡 , the mean,
and st. dev. of accuracy estimates at 𝛼𝑠 and 𝛼𝑡 we say that 𝛼𝑡 is better
than 𝛼𝑠 if `𝑡 − 𝜎𝑡 > `𝑠 + 𝜎𝑠 .

The best value emerging from this procedure is 𝛼∗. If no value is
strictly better than 𝛼 = 1 we say that 𝛼∗ = 1. As each experiment is
run for many trials, we end up with one value of 𝛼∗ for each trial.
Thus, we typically report the mode value of 𝛼∗ across all trials.

7.2 CBA Delegation Graphs
Figure 4 shows how 𝛼∗ changes as the average voter competence
increases when voter delegations use a CBA topology. Each point
represents 50 trials with 100 voters each.

As CBA graphs are dominated by a small number of powerful
gurus, Figure 4 shows a phase shift when mean competence reaches
roughly 0.5 At ` < 0.5 most trials find 𝛼∗ = 1, corresponding to
dominance from the large components in the graph. At ` > 0.5, it
becomes beneficial to have more gurus affecting the outcome (due
to Jury Theorem effects; more voters is beneficial when average
competence is above 0.5) so 𝛼∗ approaches 0.

7.3 Viscosity in Random Networks
For each delegation mechanism and competence distribution, we
ran 300 trials on randomly generated ER and BA social networks.
Figure 5 shows how often each value of 𝛼 is optimal for ER networks
with 𝑝 = 0.1.

The heatmap immediately makes clear that 𝛼∗ takes on a wide
range of values. It is often 1, but is often below 1 as well. In particular,
we see a shift similar to the CBA topology in subsection 7.2: when
mean competence is below 0.5, 𝛼∗ is usually 1. When voters become

2Since the exponential distribution does not provide an upper bound on sampled values
whenever we sample a competency value greater than 1 we map the value to 1. This

leads to a mean value slightly lower than the original distribution, i.e `′ = 1
_
− 𝑒−_

_
.

Figure 4: (Top) The mode value of 𝛼∗ (solid) and frequency with
which 𝛼∗ is strictly below 1 (dashed) over 50 trials on randomly
generated CBA delegation graphs of 100 voters. A typical CBA
graph (Bottom) is dominated by a few gurus receiving the large
majority of delegations. As 𝛼 increases the most powerful gurus
become dictators and beneficial jury-theorem effects are lost.

more competent, 𝛼∗ takes on a wider range of values between 0 and
0.5.

Moreover, Figure 6 shows the amount by which accuracy can
be improved simply by setting 𝛼 optimally. Figure 6 displays the
difference in accuracy between two settings: (1) when 𝛼 = 1, and (2)
when 𝛼 = 𝛼∗. When evaluating Uniform and Gaussian competence
distributions, a mean voter competence over 0.5 shows significant
benefit from optimal values of alpha while only mild improvement
is seen with Exponential competencies. This effect holds across
network type and delegation mechanism, as seen in Appendix D.2.

7.4 Delegation Graph Structure
We have examined several properties of the delegation graph struc-
ture to see whether they have an impact on the value of optimal alpha.
From the delegation graphs of the same experiments discussed in
subsection 7.3 we computed the values of several features. On this
dataset, with 𝛼∗ as a target variable, we ran a RandomForest re-
gression. This found that no single feature was extremely predictive
of 𝛼∗ but mean competence was the most predictive. Specifically,
higher competence values were related with lower values of 𝛼∗. A
list of features we explored, and their importances is included in
Appendix D.3.

7.5 Empirical Data
To strengthen the results we show in subsection 7.3 we have run del-
egation experiments over several real-world networks. The networks



Figure 5: Distribution of 𝛼∗ across competence distributions and delegation mechanisms. 300 trials were performed for each mean
voter competence value. Each cell shows the number of trials at each mean competence value in which the corresponding 𝛼 value is
optimal. Results are on a 100 voter Erdős–Rényi network with 𝑝 = 0.1 which is randomly regenerated at each trial. Similar results for
Barabási–Albert networks are shown in Appendix D.1.

Figure 6: Accuracy improvement from using optimal viscosity
vs no viscosity (𝛼 = 1) for voters on random graph models
delegating using the Max delegation mechanism. Results are
averaged over 30 trials with 100 voters per experiment.

are described in detail in Appendix C and cover a wide range of sizes
and topologies. These experiments show very similar distributions
of 𝛼∗, suggesting that these results are highly robust to network
structure.

8 DISCUSSION
This paper has shown that viscous democracy can significantly im-
prove upon liquid democracy in many realistic scenarios. On simu-
lated and empirical networks, when voters are moderately competent
and there are few experts with much higher-than-average compe-
tence, setting a low value for 𝛼 is likely to improve the chance of
retrieving the ground truth. Intuitively, low values of 𝛼 increase the

number of gurus that can have meaningful impact on the election by
making it harder for voters to amass large amounts of power.

In contexts where there is a joint decision making objective and
voter delegation, the use of viscosity should be strongly considered –
it may provide as much as 10-20% improvement in accuracy over
standard liquid democracy.

9 OUTLOOK
Our results have shown that viscosity improves decision-making
ability in a myriad of statistical settings as well as different social
network structures. This opens up several avenues for future research
on why viscosity is useful and how to apply this knowledge.

• Computing 𝛼∗ rigorously: we have used a basic method to
find 𝛼∗ in this paper. It served to emphasise the existence
of non-trivial values for 𝛼∗. In future experiments it will be
better to lean more deeply into the statistical literature and
use ANOVA test or a similar methodology for selecting 𝛼∗.
• Evaluating viscous democracy in other settings: Here we

concentrated on a simple epistemic model of elections in
which the decision to be made is binary. Evaluating the im-
provement from viscous democracy in more involved settings
is important. Many settings remain open for exploration, such
as multi-winner elections and more subjective settings where
there is no ground truth.
• Developing practical tools for viscous democracy: We have

shown that viscosity typically improves delegation perfor-
mance. Practically, developing tools that can efficiently pre-
dict the values of 𝛼∗ across different settings is important.



Various machine learning and optimization techniques may
prove valuable for this task.
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A DELEGATION FUNCTIONS
• Max: Each delegating voter 𝑣𝑖 delegates to their most compe-

tent neighbour.

𝑝max (𝑣𝑖 , 𝑣 𝑗 ) =
{
1 𝑞 𝑗 = argmax𝑗 ∈ {𝑞 𝑗 ∈ 𝑄 | (𝑖, 𝑗) ∈ 𝐸}
0 otherwise

• Random Better: Each delegating voter, 𝑣𝑖 , selects one of their
neighbours uniformly at random from the set of neighbours
with higher competence. That is, 𝑣𝑖 delegates to a random
voter from the set 𝑁 +

𝐺
(𝑖) where:

𝑁 +𝐺 (𝑖) =
{
𝑗 ∈ 𝑉 | (𝑖, 𝑗) ∈ 𝐸 , 𝑞 𝑗 > 𝑞𝑖

}
𝑝rand_better (𝑣𝑖 , 𝑣 𝑗 ) =

{
1

|𝑁 + (𝑣𝑖 ) | 𝑗 ∈ 𝑁 + (𝑣𝑖 )
0 otherwise

• Proportional Better: Delegators delegate to a neighbour with
higher competence, however, the chance of delegating to a
neighbour is directly correlated with the difference between
their guru’s competence and that of the delegator.

𝑝prop_better (𝑣𝑖 , 𝑣 𝑗 ) ∝
{ 𝑞𝑑∗ ( 𝑗 )−𝑞𝑖∑

𝑣𝑘 ∈𝑁 + (𝑣𝑖 ) 𝑞𝑑∗ (𝑘 )−𝑞𝑖
𝑗 ∈ 𝑁 + (𝑣𝑖 )

0 otherwise

• Proportional Weighted: Delegation probabilities are based
on both the competence difference between delegator and
delegatee, as well as the weight of the representative ulti-
mately being delegated to. A lower weight leads to a higher
delegation probability.

𝑝prop_weighted (𝑣𝑖 , 𝑣 𝑗 ) ∝
{
♣ 𝑗 ∈ 𝑁 + (𝑣𝑖 )
0 otherwise

where ♣ := 1
𝑤𝑑∗ ( 𝑗 )

𝑞𝑑∗ ( 𝑗 )−𝑞𝑖∑
𝑣𝑘 ∈𝑁 + (𝑣𝑖 ) 𝑞𝑑∗ (𝑘 )−𝑞𝑖

.

B ESTIMATING 𝛼∗

Algorithm 2 Estimating 𝛼∗

Input: 𝑡, 𝑘,𝑄, 𝐷
1: 𝛼∗, `max, 𝜎max ← 1, 1, 1
2: 𝐴← 𝑡 points sampled evenly from [0, 1]
3: for 𝑎𝑡 ∈ 𝐴 do
4: 𝛼 ← 𝑎𝑡
5: for 𝑖 ∈ 0..𝑘 do
6: 𝑎𝑐𝑐𝑡,𝑖 ← 𝐴𝑐𝑐 (𝛼,𝑄, 𝐷)
7: end for
8: `𝑡 , 𝜎𝑡 ← mean(𝑎𝑐𝑐𝑡,−), st. dev.(𝑎𝑐𝑐𝑡,−)
9: if `𝑡 − 𝜎𝑡 > `max + 𝜎max then

10: 𝛼∗, `max, 𝜎max ← 𝛼, `𝑡 , 𝜎𝑡
11: end if
12: end for

C DESCRIPTION OF REAL-WORLD
NETWORKS

Network Nodes Edges Source

celegans 296 2359 Watts and Strogatz (1998)
dolphins 62 159 Lusseau et al. (2003)
email 1133 10903 Guimera et al. (2003)
jazz 198 5484 Gleiser and Danon (2003)
netscience 1589 2700 Newman (2006)
karate 34 78 Zachary (1977)
lesmis 77 254 Knuth (1993)

Table 1: The real-world networks used in our analysis.

D SUPPLEMENTAL EXPERIMENT RESULTS
D.1 Distribution of Optimal 𝛼∗



Figure 7: Distribution of 𝛼∗ across competence distributions and delegation mechanisms. 300 trials were performed for each mean
voter competence value. Each cell shows the fraction of trials at each mean competence value in which the corresponding 𝛼 value is
optimal. Results are on a 100 voter Barabási–Albert network with𝑚 = 10 which is randomly regenerated at each trial.

Figure 8: Distribution of 𝛼∗ across competence distributions and delegation mechanisms. 30 trials were performed for each mean voter
competence value. Each cell shows the fraction of trials at each mean competence value in which the corresponding 𝛼 value is optimal.
Results are shown for the celegansneural network.



Figure 9: Distribution of 𝛼∗ across competence distributions and delegation mechanisms. 30 trials were performed for each mean voter
competence value. Each cell shows the fraction of trials at each mean competence value in which the corresponding 𝛼 value is optimal.
Results are shown for the dolphins network.

Figure 10: Distribution of 𝛼∗ across competence distributions and delegation mechanisms. 30 trials were performed for each mean
voter competence value. Each cell shows the fraction of trials at each mean competence value in which the corresponding 𝛼 value is
optimal. Results are shown for the email network.



Figure 11: Distribution of 𝛼∗ across competence distributions and delegation mechanisms. 30 trials were performed for each mean
voter competence value. Each cell shows the fraction of trials at each mean competence value in which the corresponding 𝛼 value is
optimal. Results are shown for the jazz network.

Figure 12: Distribution of 𝛼∗ across competence distributions and delegation mechanisms. 30 trials were performed for each mean
voter competence value. Each cell shows the fraction of trials at each mean competence value in which the corresponding 𝛼 value is
optimal. Results are shown for the karate network.



Figure 13: Distribution of 𝛼∗ across competence distributions and delegation mechanisms. 30 trials were performed for each mean
voter competence value. Each cell shows the fraction of trials at each mean competence value in which the corresponding 𝛼 value is
optimal. Results are shown for the lesmis network.

Figure 14: Distribution of 𝛼∗ across competence distributions and delegation mechanisms. 30 trials were performed for each mean
voter competence value. Each cell shows the fraction of trials at each mean competence value in which the corresponding 𝛼 value is
optimal. Results are shown for the netscience network.



D.2 Accuracy Improvement from 𝛼∗

Figure 15: Accuracy improvement from using optimal viscosity
vs no viscosity (𝛼 = 1) for voters on random graph models
delegating using the Random Better mechanism. Results are
averaged over 30 trials with 100 voters per experiment.

Figure 16: Accuracy improvement from using optimal viscosity
vs no viscosity (𝛼 = 1) for voters on random graph models
delegating using the Proportional Better mechanism. Results are
averaged over 30 trials with 100 voters per experiment.

Figure 17: Accuracy improvement from using optimal viscosity
vs no viscosity (𝛼 = 1) for voters on random graph models
delegating using the Proportional Weighted mechanism. Results
are averaged over 30 trials with 100 voters per experiment.

D.3 Feature Importance
We used a Random Forest regression model to explore whether any
features of an election were predictive of 𝛼∗. We assembled values
of the features listed below along with their corresponding 𝛼∗. These
values were used to train a sci-kit learn RandomForestRegressor
model [31] which reached an 𝑅2 value of approximately 0.6, indi-
cating the features had some predictive power but very little. We



then computed the relative importance of each feature in the model,
shown in Figure 18. Mean voter competence is most predictive of
𝛼∗ and has an inverse relationship: Higher mean competence loosely
indicates a lower value of 𝛼∗.

The features used in this regression are described below:
• Chain Length Gini - For each guru, measure the distance from

the guru to each of its delegators. Take the Gini index of all
these lengths.
• Grofman Distance - The ℓ2 distance of the current weight dis-

tribution of the gurus compared to the ideal 𝑤𝑖 ∼ 𝑙𝑜𝑔
(

𝑞𝑖
1−𝑞𝑖

)
(see [19]).
• Guru Weight Gini - The Gini index of the guru weights.
• Mean Competence - The mean of the underlying competence

distribution.
• Network Type - Possible values: BA and ER.
• Competence Distribution - Possible values: Uniform, Gauss-

ian or Exponential.
• Delegation Mechanism - Possible values: Max, Proportional

Better, Random Better, Proportional Weighted.

Figure 18: The feature importance given a classification of 𝛼
using random forest from the previous experiments in Section 7.


	Abstract
	1 Introduction
	2 Related Work
	3 Model
	3.1 Delegation Graphs
	3.2 Vote Weights
	3.3 Group Accuracy

	4 Families of Delegation Graphs
	4.1 Social Networks
	4.2 Delegation Functions
	4.3 Delegation Graph Models

	5 Optimal Delegation Graphs
	6 Some Pathological Cases Regarding alpha*
	6.1 Liquid Democracy: alpha = 1
	6.2 Direct Democracy: alpha* = 0
	6.3 Viscous Democracy: 0 < alpha* < 1
	6.4 Intuition Regarding alpha*

	7 Experimental Analysis
	7.1 Calculating Accuracy and alpha*
	7.2 CBA Delegation Graphs
	7.3 Viscosity in Random Networks
	7.4 Delegation Graph Structure
	7.5 Empirical Data

	8 Discussion
	9 Outlook
	References
	A Delegation Functions
	B Estimating *
	C Description of Real-World Networks
	D Supplemental Experiment Results
	D.1 Distribution of Optimal *
	D.2 Accuracy Improvement from *
	D.3 Feature Importance


