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Abstract

Continual learning aims to enable machine learning models to acquire new knowl-
edge from a shifting data distribution without forgetting what has already been learned.
Such shifting distributions can be broken into disjoint subsets of related examples called
contexts; training each ensemble member on a different context makes it possible for the
ensemble as a whole to achieve much higher accuracy with less forgetting than a naive
model. We address the problem of selecting which models within an ensemble should
learn on any given data and which should predict. By drawing on work from delegative
voting we develop an algorithm for using delegation to dynamically select which mod-
els in an ensemble are active. We explore various delegation methods and performance
metrics, ultimately finding that delegation can provide a significant performance boost
over naive learning in the face of distribution shifts.
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1. Introduction

Machine learning models often operate under the assumption that the data they are
trained on and the data on which they will make predictions are independently and identi-
cally distributed (i.i.d.). However, this assumption does not reflect the reality of the world
we live in. In practical settings, data distributions are constantly shifting. Deployed machine
learning models that operate as though the world is static will eventually become highly
inaccurate or will begin to enforce outdated knowledge about the world – often resulting in
harmful bias. Instead, models must adapt to the world as it changes.

Continual learning is a machine learning framework where models learn incrementally
on training data that arrives in an ordered stream from a shifting distribution. Naively
learning on such data allows models to remain performant on recent data but leads to a
problem known as catastrophic forgetting wherein previously learned information is forgot-
ten [1, 2]. Continual learning usually focuses on learning from a non-stationary stream
without forgetting; however, we may also want to make good predictions on this stream.
As such, ensembles, which are collections of models whose predictions are aggregated, are
a natural choice since we can select which members are predicting and which are learning
independently.

Ensembles have long been used in many machine-learning settings. In standard learning
situations, ensembles typically outperform single classifiers and demonstrate a strong ability
to leverage diverse models for a common purpose. Conceptually, ensembles are well-suited
to both learning and predicting on shifting data: By using different classifiers to learn
on different underlying distributions, the ensemble can dynamically select classifiers to rely
upon when making predictions and avoid forcing a single model to forget previous knowledge
in order to stay up-to-date. Existing work has already found that ensembles can be applied
to a continual learning setting [3–5].

We argue that the recent use of delegative voting for ensemble pruning lays a foundation
for a new continual learning algorithm. This delegative voting framework, known as liquid
democracy, allows ensemble members to participate directly in training and inference or
to transitively delegate their action to another classifier. While many continual learning
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algorithms rely upon explicit knowledge about changes in the distribution [3, 5], or remember
useful training examples so they may be re-learned [6–8], our procedure relies only upon
knowledge about the recent learning performance of each classifier. Using this information,
our algorithm makes delegation decisions which further two goals: (1) selecting the classifiers
most well suited to learn or predict on the current distribution and (2) weighting the chosen
classifiers appropriately in order to optimize their prediction accuracy.

Our algorithm is highly generic; we explore a variety of existing delegation methods
from liquid democracy and several measures of classifier performance. We can consider any
single-valued measure such as accuracy, precision, recall or f1-score. In experiments across
multiple types of continual learning, we demonstrate the utility of adapting ideas from liquid
democracy into continual learning. In particular, our contributions are as follows:

• A novel framework for continual learning based on principles of liquid democracy
that requires minimal knowledge of the learning setting.

• New definitions of classifier performance in terms of learning rate and recent per-
formance, tailored to the specific demands of continual learning.

• Empirical validation of our approach via experiments on classic continual learning
benchmarks, demonstrating a strong ability to enhance ensemble performance.

Through these contributions, our work establishes a new direction for research in contin-
ual learning, highlighting the potential of integrating concepts from delegative voting into
machine learning to create more adaptable and diverse ensembles.

2. Related Work

2.1. Ensembles in Social Choice

Ensembles rely on aggregation methods to combine outputs from many classifiers into a
single prediction. A great deal of work spanning multiple decades has applied social choice
knowledge to ensemble learning. This has been illustrated through theoretical connections
between ensemble learning and axiomatic results in social choice [9] and by experimental
evaluation of many common voting rules for classifier prediction aggregation [10, 11].

Only one line of work has considered the application of liquid democracy to ensembles.
In a setting with exactly one round of delegation, liquid democracy has been shown to not
provide any significant benefit over traditional ensembles [12]. However, delegation can also
be viewed as a form of ensemble pruning and reweighting. Using iterative delegations in an
incremental learning setting (without the distribution shift common in continual learning),
Armstrong and Larson showed that liquid democracy typically achieves higher accuracy
than a full ensemble while also dramatically reducing training costs [13]. On some datasets,
their method attained higher accuracy than the well-known ensemble algorithm Adaboost
[14]. However, this result was highly data-dependant.

2.2. Ensembles in Continual Learning

Ensembles are a useful method to improve performance in continual learning [3–5]. On
one end of the spectrum, some ensemble methods initialize a new member for each new
context they encounter [5]. However, these methods have high resource usage and require
context labels in training, limiting their applicability. Other methods, such as SEED [3]
and CoSCL [4], use a fixed number of models in the ensemble to avoid a linear increase in
parameters with the number of contexts. These methods also use the context label during
training.

Beyond ensembles, replay methods, which store examples from each context, are often
used in continual learning [6–8]. However, the storage of examples introduces extra memory
requirements and can be a privacy concern. To avoid these issues, some methods use a
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generative model to generate samples for replay [15–17], but these methods introduce extra
technical complexity and may not perform well in data-sparse settings.

3. Model

Our model bridges two fields of study: machine learning and social choice. We consider
an epistemic social choice setting where voters are instantiated as an ensemble of machine
learning classifiers. Voters (classifiers) may vote for one of several alternatives in pursuit
of a single “correct” alternative; this corresponds to the classification action of a classifier.
We focus on a setting where data has not only features and labels but also a context asso-
ciated with some distribution. Within this setting, we explore algorithms for dynamically
re-weighting voters/classifiers using delegative techniques. That is, classifier weights are
controlled by “delegation” between classifiers, and only non-delegating classifiers take part
in inference or learning. Classifiers may participate actively (they learn/predict on examples
directly) or may delegate to another classifier, thereby increasing that classifier’s prediction
weight and not learning or predicting.

Specifically, we consider an ensemble of classifiers V = {v1, v2, ..., vn}, which we equiv-
alently refer to as voters, and a non-stationary data stream D containing m classes. Data
arrives in batches of B samples over T steps, with each batch associated with some context
ct ∈ C; D = {(X1,Y1, c1), ..., (XT ,YT , cT )}. Each example in a dataset can be decomposed
into three pieces: features X , a class label Y, and a context label C. Together the class
label and context label make up a global label G. Depending upon the setting, this stream
may include training data, testing data, or training data and testing data. Figure 1 gives
an example of the difference between a class and context labels.

A delegation function, d : V × T → V , determines which classifiers are learning or doing
inference on any given batch. A delegation function value d(vi, t) = vj indicates that, during
batch t, vi delegates to vj . In most cases, the batch is clear from context, and we write
d(vi) = vj to indicate a delegation in the current batch. By default, classifiers delegate
to themselves. Classifiers that delegate to anyone other than themselves are referred to as
“delegators” and are inactive while a classifier that delegates to itself is active and may be
referred to as a “guru.” The set of all gurus is found through repeated application of the
delegation function until a self-delegation is reached: Gt(V ) = {v ∈ V |d∗(v, t) = v}. Only
classifiers that are gurus participate in learning or inference, depending on the setting.

The weight of each classifier is controlled by delegation. Specifically, a weight vector Wt

contains the weight associated with each classifier on batch t. If no classifiers delegate (that
is, they all delegate to themselves), then each classifier has a weight of 1. Generally, each
classifier has a weight equal to the number of delegations they receive, including their own:

Wt[i] =

{
0 if vi /∈ Gt(V )

|{vj ∈ V |d∗(vj , t) = vi}| otherwise
An estimate of the performance of each classifier is continually refined. Performance

can be measured as prediction accuracy or any other single-valued metric that reflects the
performance of a classifier on a batch of data. A = [at,i] stores the performance of each
classifier vi on each batch t. We are often interested in the trend of a classifier’s performance
as it learns. That is, over recent batches, has it become more or less accurate? We use
this to approximate two measures: (1) whether or not the classifier is still improving its
performance/benefits from continued training, and (2) as a proxy for whether a context
shift has happened. If a classifier’s performance drops rapidly, this is an indication that the
underlying data has shifted distributions. To evaluate this performance trend, we calculate
the slope of the linear regression line of the performance values of each classifier over some
parameter w of recent batches. We denote the performance slope of vi as qi,w and all
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Figure 1. Label types and learning targets within continual learning. Classes are grouped
into disjoint contexts which are concatenated to form a data stream. Class Incremental
Learning (CIL) learns the global label – a unique combination of context label and within-
context label. Domain Incremental Learning (DIL) learns only the within-context label.
(This figure is inspired by a similar figure from Ven, Tuytelaars, and Tolias [2].)

such slopes as Q. The set of all classifiers with a higher slope than vi is N+(vi) = {vj ∈
V |qj,w > qi,w}. Intuitively, this corresponds to the classifiers that are “better” than vi;
those showing more recent improvement in accuracy. Typically, we refer to the current
weight and estimated performance of classifier vi as wi and qi, respectively, only including
a time subscript where necessary.

To generate a prediction, each guru in the ensemble generates class probabilities for each
possible class. These are given a weight equal to the guru’s weight and summed to get a
weighted probability for each class. The class with the highest weighted probability is the
ensemble’s prediction.

3.1. Continual Learning

In continual learning, a learner attempts to learn from a non-stationary stream of data
arriving in batches, each associated with some context. A context may appear in multiple
contiguous batches, but, importantly, after a context stops arriving, it does not return
during the training phase. This can lead to what is commonly referred to as “catastrophic
forgetting,” which is characterized by the learner forgetting how to classify samples from
contexts learned early in training after further learning in other contexts has occurred.

We explore two of the standard scenarios within continual learning, differentiated based
upon the information available to the learner and the label space [2, 18]:

(1) In class-incremental learning, contexts have disjoint class labels. Classifiers only
know the current context during training, not testing. The classifier must learn to
predict both the label and context given only the input. Formally, the goal is to
learn a mapping f : X → Y × C.

(2) In domain-incremental learning, each context has the same class labels, but they
may appear at different frequencies in different contexts. The goal is to learn a
mapping f : X → Y.

Figure 1 gives an example of the learning target of both learning methods. Algorithm 1
outlines the general behaviour of our continual learning training algorithms: Voters all start
as gurus then, for each batch of data: The ensemble receives the batch, has all gurus learn the
batch, and updates delegations based on training performance. Note that in all settings,
we assume the training data is ordered or non-stationary, but there are no assumptions
about the test set. We can construct the test set as useful for evaluation. For example, it is
common to report test accuracy over all contexts and within context. We may assume, in
some cases, that the test set is non-stationary.
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Algorithm 1 Continually Learning Liquid Democracy Ensemble
Input: Batch size B, number of classifiers n, delegation mechanism DelMech
Initialize all classifiers {vi}ni=1 and all delegations to d(vi) = vi
for t = 1, ..., T do

Receive batch {(xj , yj)}Bj=1 from data stream
for vi ∈ V do
vi makes predictions {ŷi,j}Bj=1 on current batch
if d(vi) = vi (classifier is guru) then
vi learns on batch

end if
end for
Update delegations: DelMech(V )

end for

4. Delegation Mechanisms

We develop a delegation mechanism suitable for continual learning that aims to be adap-
tive to context shifts while incorporating existing delegation methods as a parameter. Our
mechanism, k-Best-Accuracy-Trend (k-BAT), does not depend on knowledge about the cur-
rent context or store previous examples. Rather, the mechanism uses a weak signal about
the recent performance of each classifier in the ensemble to determine whether/where each
classifier should delegate.

4.1. k-Best-Accuracy-Trend Delegations

Our algorithm is presented in Algorithm 2 and here in words. In continual learning, data
is organized into contexts which are further subdivided into batches. k-BAT works over
batches, using two parameters to record performance and make decisions: A metric pa-
rameter evaluates the performance of classifiers and a delegation probability function
determines where classifiers will delegate.

During learning, k-BAT is called once per batch after the active voters in the ensemble
have learned on the batch. When it begins, k-BAT calculates and records the prediction
performance of all classifiers on the recent batch according to the given metric (this can
be any signal about performance such as accuracy, f1-score, etc.). Subsequently, for each
classifier, linear regression is performed over the most recent w batches and the slope of the
result is recorded (a positive slope indicates that a classifier is generally improving, while a
negative slope indicates the reverse).

After recording the performance, delegation begins. The k classifiers with the best per-
formance trend are chosen to act as gurus. Each remaining classifier chooses a single other
classifier to whom they delegate. Each delegation is made according to the given delegation
probability function, which may use accuracy, weight, or other information to determine
the probability that each classifier will delegate to each other classifier.

Note that k-BAT only operates during training ; during test time, all classifiers in the
ensemble are active. The idea is that when making predictions, classifiers trained on a
specific context are more confident and accurate when predicting classes from that context,
while those not trained on that context are less confident and spread their probability mass
more evenly between the classes. Since we make final predictions by summing the class
probabilities across ensemble members, this means the accurate, confident classifiers mainly
determine the final prediction on classes from the context they were trained on.

In contrast to other methods, we focus on keeping the architecture simple and general.
We do not use a generative model or replay buffer or leverage context labels in training or
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Algorithm 2 Best Accuracy Trend Delegation Mechanism
Input: V , w, metric, delegation_probability_function
P ← n× n matrix initialized to 0
for vi ∈ V do
qi ← linear regression slope of metric over last w batches.

end for
for vi ∈ V do

for each vj ∈ V where i ̸= j do
if qi > qj and d(vi) = vj then
d(vi) := vi

else
Pi,j := delegation_probability_function(vi, vj)

end if
end for
Select a vj according to probabilities Pi,−
d(vi) := vj

end for

testing, and we use a fixed number of models in our ensemble to limit parameter growth.
Not relying on context labels in training allows our method to work in a more diverse range
of settings, including both class-incremental and domain-incremental learning settings.

Below, we describe the individual delegation probability functions that we explore.

4.2. Delegation Probability Functions

Definition 1. The Random Better Delegation Probability Function assigns delegation
probabilities such that each classifier with a higher regression slope than the delegator is
selected with equal probability.

prand_better(vi, vj) =

{
1

|N+(vi)| j ∈ N+(vi)

0 otherwise

Definition 2. The Proportional Better Delegation Probability Function assigns delega-
tion probabilities such that each classifier with a higher regression slope than the delegator is
assigned a probability proportional to their regression slope value. Shown here are delegation
probabilities before normalization.

pprop_better(vi, vj) ∝

{
qj−qi∑

vk∈N+(vi)
qk−qi

j ∈ N+(vi)

0 otherwise

Definition 3. The Proportional Weighted Delegation Probability Function assigns dele-
gation probabilities such that each classifier with a higher regression slope than the delegator
is assigned a probability proportional to both their regression slope value and the weight of
the delegate’s guru. A lower weight leads to a higher delegation probability. Shown here are
delegation probabilities before normalization.

pprop_weighted(vi, vj) ∝

{
1

wd∗(j)

qj−qi∑
vk∈N+(vi)

qk−qi
j ∈ N+(vi)

0 otherwise
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4.3. Student-Expert Delegations

The Student-Expert extends delegation to test time by running delegation separately
on two sets of classifiers: one set which learns (students) and another which is used for
inference (experts). Typically, in continual learning, evaluation is done after training on
each context individually or with the assumption that the test stream is drawn i.i.d from
all contexts. This can be useful for assessing the degree of forgetting, but in reality, the
test stream is likely to be non-stationary, similar to the training stream. We can leverage
the non-stationary nature of the test stream with a method that dynamically shifts which
members of the ensemble are making predictions.

The Student-Expert delegation mechanism does just this by adding delegation to the test
phase. Delegation dynamically shifts which members of the ensemble are making predictions.
The Student-Expert mechanism is an extension of the k-Best-Accuracy-Trend (k-BAT) del-
egation mechanism described in subsection 4.1. It maintains ks “student” classifiers and ke
“expert” classifiers. k − BAT is run normally for each batch of data to pick ks students
who learn on that batch. Separately, we select ke experts, which will make predictions on
the batch. Currently, we use only the Proportional Better delegation probability function
to select student gurus. Students measure performance using a parameterized window size
of w and a given performance metric as in k-BAT, while experts measure performance by
comparing classifier prediction accuracy on only the most recent batch.

5. Experiments

We evaluate our algorithms along several axes – number of gurus, performance metric,
and delegation mechanism. To do this, we run three experiments: First, a simple experi-
ment demonstrates the behaviour of an ensemble using k-BAT within a class-incremental
setting. Second, an in-depth experiment explores parameterizations of our algorithms for
class-incremental learning. Finally, a similar experiment applies the same algorithms to
domain-incremental learning. Our results show strong performance across both settings
and surprising differences in optimal parameters for class- and domain-incremental learn-
ing.

5.1. Experimental Setup

Data: We use two MNIST datasets common throughout continual learning research:
Split MNIST and Rotated MNIST [2]. Split MNIST consists of grey-scale images of digits
from 0 to 9, all scaled to the same dimensions [19]. Feature values are pixels, and the class
is the digit value. We use Split MNIST as a stream of data partitioned into 5 contexts,
each consisting of exactly two random digits. We use Split MNIST in the class-incremental
setting where we learn the global label, i.e. the digit value (0-9).

In the domain-incremental setting, we use a slightly more complex data set: Rotated
MNIST. This data again consists of grey-scale images of digits, as in Split MNIST. However,
the digits are now rotated around the center of the image from anywhere between 180◦ and
−180◦. We initialize Rotated MNIST into a stream consisting of 5 disjoint contexts. Each
context corresponds to a specific rotation amount and contains only images corresponding
to that rotation. The context label is the rotation amount, and the within-context label
(the domain-incremental learning target) is the digit value (0-9). Each context’s rotation is
sampled uniformly at random.

Parameter Values: We explore a range of parameters in both learning settings. We
evaluate k-BAT with three performance metrics: accuracy, balanced accuracy and F1 score;
as well as k ∈ {1, 2, 3, 4}. We explore each delegation probability function and report on
the best one. Additionally, we use between 1 and 4 experts in Student-Expert delegation.
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Experiments use ensembles of size 8 except the larger experiment on class-incremental learn-
ing, which explored an ensemble of size 30 with up to 11 gurus, and the smaller illustrative
experiment, which used an ensemble size of 5.

Figure 2. Active learning periods of each clas-
sifier on Split MNIST using k-BAT with k = 1
and probabilistic better delegation. Red pe-
riods indicate a classifier is actively learning.
With a window size of 50, all classifiers learn
on the first 50 batches. Subsequently, dele-
gation begins, and one classifier learns at a
time. At context shifts (green lines) various
classifiers briefly begin to learn but k-BAT ef-
fectively picks a single classifier to learn the
majority of a context without any knowledge
of the context label.

Our models are all simple feed-forward neural
networks with two hidden layers which use the
Adam optimizer, implemented using Pytorch [20].
In line with previous work that compares ensem-
ble methods with multiple learners to methods
which only use a single learner, we keep the total
number of trainable parameters for each contin-
ual learning method roughly equal [4]. That is,
when comparing the performance of an ensemble
of 8 classifiers to a single network, each network in
the ensemble has roughly one-eighth the number
of trainable parameters as the solitary network.
In the class-incremental setting, k-BAT and the
Student-Expert method use a window size, w, of
50 batches. In the domain-incremental setting,
these methods use a window size of 400. In all
cases, we use a batch size of 128.

Benchmarks: We compare our algorithms
with a wide range of existing continual learning
methods implemented in the Avalanche Contin-
ual Learning library [21]. These methods can
largely be divided upon two axes: memory and
context knowledge. Our methods, k-BAT and
Student Expert, do not store previous examples
or receive context labels while learning. Memory-
based methods (GEM [22], MIR [23], Replay [24])
store previously seen data to avoid forgetting it
but do not necessarily use task identities. Meth-
ods that do not rely on memory often focus on
slowing down updates to certain parts of a model
(e.g. neural network weights useful for learning
about one class are not updated). Some such
methods are explicitly given task identities (MAS
[25], CWR [26]) while others are not (LFL [27],
RWalk [28]).

5.2. Results

In our first experiment, we construct a simplis-
tic scenario using the Split MNIST data, which is
meant to illustrate the behaviour of k-BAT. We
plot each classifier’s learning curve and the peri-
ods in which they were active on the training set.
Figure 2 shows that the classifiers divide and conquer, with one classifier learning the ma-
jority of each context after the first. This is notable as k-BAT does not use the context
label and does not explicitly aim to recognize when the context changes.

At the beginning of learning, all classifiers remain active until they learn on w batches
and delegation begins. Classifiers that have learned on fewer batches have more plasticity
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and are likely to learn more quickly, leading to a higher regression slope. Thus, classifiers
not trained on a previous context learn more quickly than classifiers already trained on
a context. When the context switches, the trained classifier’s performance drops rapidly,
leading to a negative regression slope. Then, the classifier previously learning will delegate
to a classifier that learns quickly on the new context.

5.2.1. Class-Incremental Learning

Our second experiment investigates the k-BAT and Student-Expert methods using vary-
ing parameter values in our delegative framework. In particular, we vary the number of
active learning gurus during training for both the k-BAT and the Student-Expert method,
and we vary the number of active predicting gurus for the Student-Expert method. We also
vary the delegation probability function and the classifier competency metric for k-BAT.

Table 1 shows the average accuracy of each method on the full test set as well as the
average accuracy in each context on the Split MNIST dataset. Both k-BAT and the Student-
Expert method significantly outperform naive methods (Full Ensemble and Single Learner).
The Student-Expert method is the only one to leverage order in the test set and thus
significantly outperforms all similar methods that do not rely on memory. Order in the test
set is rarely available, so we separate these results from others. However, even k-BAT, which
does not receive any batch labels during testing, is more accurate than other methods that
do not rely on memory.

Figure 3. Test accuracy for k-BAT on domain-incremental
learning and two sizes of ensemble doing class-incremental
learning. Results are averaged over the probability delega-
tion functions and delegation metrics. While the small-scale
experiment on class-incremental learning performs best with
only 1 guru, other settings are optimized with larger numbers
of gurus.

The performance on each of the
five contexts reveals that k-BAT and
Student-Expert successfully remem-
ber information from the first four
contexts, indicating a strong ability
to avoid catastrophic forgetting. In
regard to methods which predict on
the whole test set statically, our k-
BAT method with 1 active learn-
ing guru performs particularly well,
achieving greater than zero accuracy
in each context.

The Student-Expert model shows
the benefit that comes with structure
in an online test stream. Overall,
we see that Student-Expert with 1
guru during both training and test-
ing achieved a 91.75% test accuracy
while k-BAT with 1 guru achieved
only a 43.27% accuracy. However,
even k-BAT is much higher than all other methods that similarly don’t rely on memory.

Figure 3 shows that, in the larger class-incremental setting with 30 classifiers, having
as many as 7 gurus can benefit performance. However, in smaller ensembles, 1 guru ap-
pears optimal. We found no significant differences in accuracy when varying the delegation
probability function and classifier competency metric in k-BAT.

5.2.2. Domain-Incremental Learning

In our third experiment, we investigate the performance of k-BAT and Student-Expert in
the domain-incremental setting. The results of this experiment can be seen in Table 2. The
Student-Expert method significantly outperforms all other methods that do not use memory,
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Method Mean Acc. C1 C2 C3 C4 C5

Student-Expert 91.75± 0.39 93.05± 0.85 89.95± 1.07 92.08± 0.42 92.90± 0.15 90.79± 0.33

GEM 95.78 ± 0.22 98.39± 0.23 95.19 ± 0.65 94.98 ± 0.76 95.79 ± 0.35 94.55± 0.33
Replay 72.95± 1.76 80.85± 3.00 60.96± 4.77 51.45± 6.30 74.20± 4.73 97.27 ± 0.35
MIR 52.42± 10.00 60.00± 21.01 57.34± 14.61 64.48± 22.05 0.12± 0.21 80.16± 14.99

k-BAT 43.27± 3.38 73.18± 14.16 2.45± 5.10 93.28± 4.34 35.88± 17.49 11.54± 17.10

CWR 19.98± 0.01 99.88 ± 0.05 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00
LwF 19.37± 0.14 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00 96.87± 0.70

MAS 25.26± 3.18 18.04± 11.09 1.99± 2.87 0.34± 0.57 9.48± 8.93 96.47± 0.26

RWalk 19.43± 0.06 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00 97.17± 0.28
Single Learner 19.44± 0.05 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00 97.19± 0.26

Full Ensemble 19.28± 0.08 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00 96.40± 0.41

Table 1. Test accuracy on Split MNIST for all methods averaged over 10 trials in the
class-incremental learning setting evaluated after training on all contexts. Results are
grouped into 3 sections; the top section shows the performance possible without memory
and when leveraging structure within the test set. The middle section compares against
pre-existing methods that rely on memory. The bottom section compares methods that
do not use memory. Our methods show that ensembles are able to provide significant
performance boosts when leveraging structure in test data (Student-Expert with 1 train,
1 test guru), as well as when not memorizing previous examples or being given the
context label (k-BAT with k = 1, Probabilistic Better delegation probability function
and balanced accuracy as the performance metric).

Method Mean Acc. C1 C2 C3 C4 C5

Student Expert 92.46± 1.39 93.59± 0.62 89.21± 3.27 92.34± 2.41 92.12± 3.94 95.05± 0.68

GEM 95.41 ± 0.60 94.66 ± 1.44 94.93 ± 1.50 94.72 ± 0.90 95.71 ± 0.81 97.05± 0.21
Replay 75.25± 8.73 64.86± 16.41 71.25± 21.33 64.59± 16.54 78.40± 11.79 97.13± 0.36

MIR 61.97± 11.91 44.83± 24.31 57.07± 32.44 48.97± 23.19 61.83± 22.91 97.15± 0.31

k-BAT 74.78± 7.24 73.92± 19.46 64.51± 25.03 65.59± 18.22 85.08± 9.95 84.82± 8.49

CWR 55.00± 8.06 65.32± 16.09 43.12± 19.88 43.83± 14.78 62.34± 17.54 60.40± 13.44

LwF 70.81± 9.06 56.92± 21.97 62.23± 30.19 59.89± 20.91 77.81± 14.57 97.20 ± 0.27
MAS 65.78± 7.57 62.66± 19.10 58.79± 21.73 51.29± 17.00 72.80± 13.26 83.38± 4.10

RWalk 67.77± 9.77 53.48± 21.63 62.51± 28.99 54.77± 21.32 71.48± 16.10 96.61± 0.39

Single Learner 62.29± 11.36 45.83± 24.37 57.09± 32.70 48.97± 22.85 62.51± 21.16 97.04± 0.18
Full Ensemble 59.42± 11.86 42.10± 25.15 54.10± 33.59 45.58± 22.74 59.09± 23.05 96.23± 0.44

Table 2. Test accuracy for all methods averaged over 10 trials in the domain-incremental
learning setting using the Rotated MNIST dataset. All methods are evaluated after
training on all contexts. k-BAT uses the random better delegation probability function
and F1 score as the performance metric and 2 gurus during training. Student-Expert
uses the probabilistic better delegation probability function and accuracy as the metric
with 2 classifiers active during training and testing. Most methods show strong test
performance on the most recently learned data while exhibiting moderate forgetfulness
on previously learned data. k-BAT exhibits much stronger performance than existing
methods that do not rely on replay. The Student-Expert algorithm (top row) highlights
the performance possible on an ordered test stream, even without memory.

achieving an average test accuracy of 92.46% with 2 active gurus during training and testing.
This is primarily due to the fact that Student-Expert operates on an ordered, online test
stream, as discussed previously. Of the remaining methods that don’t use memory, k-BAT
with k = 2 achieves the highest average accuracy of 74.78%.

Impressively, both Student-Expert and k-BAT perform similarly well in the first context
as in some later contexts. Overall, both of our methods avoid significant forgetting.

When averaging over all parameter configurations for k-BAT, using k = 2 or k = 3
resulted in the best performance. Similar to our findings in the class-incremental setting,
each performance metric and delegation probability function leads to similar performance.
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6. Discussion

In this paper, we have developed new ensemble training algorithms based on delegative
techniques for two types of continual learning: class-incremental and domain-incremental.
Our first algorithm, k-BAT, approximately selects a unique ensemble member to learn each
new context without any knowledge about the context itself. k-BAT effectively teaches
different members of the ensemble on different distributions and drastically reduces the cat-
astrophic forgetting common to continual learning settings. Our Student-Expert delegation
mechanism extends k-BAT to allow delegation during testing and improves performance in
the presence of ordered test data. This avoids catastrophic forgetting and showcases the
power of delegation for dynamically selecting classifiers to both learn and make predictions.

Curiously, in our class-incremental learning experiments with only 8 classifiers in the
ensemble, we found that 1 guru led to the highest accuracy. This is not the case with
domain-incremental learning, where multiple gurus are superior. Intuitively, when there are
more classifiers than contexts, having multiple classifiers learn on a context should have
better performance than when just one classifier is learning. Our result suggests that either
(1) individual classifiers are quite strong in the class-incremental setting and that more gurus
may be useful when the learning task is more difficult, or (2) there is room for improvement
in the delegation algorithm. In either case, further investigation will be useful.

Generally, our experiments have shown the power of ensembles for continual learning
and have demonstrated the ability to learn effectively across context shifts without explicit
knowledge of the context. However, a great deal of work could extend this research in
compelling directions. Some specific paths include:

• Optimal delegations: We have no guarantee of the quality of our delegative process.
Both theoretical and further experimental work will be important to identify an up-
per bound on the performance improvement granted by our delegation mechanisms.

• New performance metrics for delegation: Our delegation mechanisms use a generic
signal of quality to decide delegations. We experimented with common metrics such
as accuracy and f1-score; however, other metrics may lead to better outcomes.

• Further comparison with existing methods to avoid catastrophic forgetting. We
compared our results with three methods well suited for domain-incremental learn-
ing, however these methods prove to work poorly on the class-incremental setting.
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