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ABSTRACT
Liquid democracy is a proxy-voting method in which voters may

transitively delegate their votes, allowing others to vote in their

place. It is often analysed and used in settings where there is some

single, objectively correct outcome that voters collectively aim to

select. As a result, much of the previous work on liquid democracy

has proposed agent utility functions which depend directly on

the accuracy of the delegatee voters. We argue, instead, that a

more realistic model would have voters’ incentives more closely

aligned with the final outcome, rather than the proxy vote cast. We

explore this alternative and show that there exists a pure-strategy

Nash equilibirum that can be reached by best-response delegations.

Furthermore, allowing for vote-delegation always weakly improves

the accuracy of the decision-making process compared to having

all agents vote directly. We apply this model to a classifier ensemble

problem. While our theoretical findings are positive, our empirical

results show that the assumption of independence between voters

required for theoretical analysis is critical. Once removed, liquid

democracy fails to materialize any practical improvement over

direct voting.
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1 INTRODUCTION
Liquid democracy is an emerging trend in social choice aimed at

allowing less informed voters to benefit from expert knowledge

and find a balance between traditional representative democracy

and direct democracy. It is a form of proxy voting [17] in which

delegation is transitive. Every voter has the option of casting their

vote directly or of delegating to another voter. Agents that vote di-

rectly are referred to as gurus and their vote is given a weight equal

to the number of direct and indirect delegations they have received
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(including their own). While not inherent to liquid democracy it is

common that a weighted majority voting rule is used.

First described in 1969 [24] modern technology has allowed

liquid democracy to be practically implemented and used with up

to thousands of voters [2, 18]. These systems aspire to provide all

the benefits of direct democracy by allowing all voters who are

well-informed on a particular issue to vote directly, while also –

as in representative democracy – giving non-experts the ability to

support expert decision-makers. For these reasons many models

restrict their focus to a ground-truth setting where voters must

select a single correct outcome from two (or more) alternatives.

However, a less optimistic view of liquid democracy reveals

several potential concerns [4]. Allowing arbitrary delegations gives

the possibility of single voters receiving disproportionate power,

which has already been observed in practice[21]. Cycles among

delegators can occur frequently and there seems to be no clear

consensus about how to resolve them with some work restricting

delegations to disallow cycles [20], effectively ignoring voters in a

cycle [3], or requiring voters provide additional information such

as a ranking over possible delegations [7]. As well, there has thus

far been relatively little work quantifying the benefits of liquid

democracy over other social choice mechanisms.

This paper explores the final issue: whether it is possible to re-

liably benefit from liquid democracy. We study a basic model of

ground-truth voting with two alternatives and provide the first for-

malization of group accuracy in this settingwithin liquid democracy.

Our theoretical results show that allowing delegation between vot-

ers will always weakly improve the accuracy of a group at finding

a ground truth. This model is validated experimentally by extend-

ing it to a machine learning setting and using classifiers to act as

voters. However, the improvement from liquid democracy tends to

be relatively small and finding the ideal delegations to achieve it is

computationally expensive. We go on to demonstrate that achieving

significant gain to group accuracy from simpler delegation strate-

gies is not readily possible. This throws into question whether liquid

democracy is actually a good choice for ground-truth elections.

We begin with an exploration of the existing work on liquid

democracy, highlighting several existing and unresolved issues.

Section 3 introduces our formal problem setting and model describ-

ing how voters decide whether or not to delegate and the delegation

process. This model is analysed in Section 4 with results showing a

guarantee that giving voters the option of delegating can always

weakly benefit group accuracy. Section 5 extends our model to fit

a real-world setting and runs liquid democracy on classifier en-

sembles. Experiments in this setting show that reliably gaining

any significant benefit from liquid democracy is not feasible. We

conclude with a call for future work in this area of social choice to

pay more heed to empirical limitations of their theoretical results.



2 RELATEDWORK
Delegative democracy has a history tracing back as far as Dogdson’s

work in 1884 [14] and has since been studied in political science

contexts [4, 17]. Recently delegation has gained attention in the ar-

tificial intelligence and social choice communities, with a focus on

liquid democracy. Modern work in this area tends to involve modi-

fications or clarifications to the basic concept of liquid democracy

or analysis of such a system.

A model in which voters aim to identify a shared ground-truth

and have some probability of voting correctly is studied by [3]

which considers the existence of Nash equilibria but defines a util-

ity function for each voter rather than focusing on group accuracy

as a whole. [20] also considers a similar model and shows that under

certain assumptions there is no decentralized mechanism that can

guarantee delegation will strictly improve accuracy. Some of these

assumptions are rebutted by [10] which shows that optimal delega-

tions cannot be easily approximated but can require delegating to

less accurate voters.

Several papers aim to address potential problems with liquid

democracy. Delegation cycles naturally occur often and may de-

prive voters of representation; [22] develops a method of resolving

delegations which avoids cycles while avoiding cycles is shown to

be NP-hard in some settings by [8] who adapt an existing frame-

work to take into account delegation graphs while voting rather

than trying to avoid cycles. [5] address the issue of possible dic-

tatorships arising by reducing the weight of delegations based on

how far they have traveled while [16] develops a centralized mech-

anism that aims to minimize the maximum weight given to any

voter by allowing voters to specify multiple delegations. [26] aims

to understand how power is distributed among voters and what

leads to disproportionate accrual of power.

Empirical uses of liquid democracy are studied by a few papers,

though they frequently do not draw connections with existing the-

ory or provide significant evaluation of their systems. [21] describes

the use of liquid democracy in German elections and shows the

existence of “super-voters” with many more delegations than most

individuals. Others, such as [6] and [1], describe practical uses of

liquid democracy but lack evaluation.

The experimental design of our ensembles is based on [13] which

investigates the impact of different voting rules on ensemble accu-

racy. Likening ensembles of classifiers to voters bears a similarity

to the theoretical model of liquid democracy studied in [11], where

voters must decide on many binary propositions. They show the ex-

istence of a number of problems relating to rationality and suggest

as solutions multiple voters that select multiple possible delegates

and default votes. To gain insight into pre-existing measures of

ensemble diversity we have primarily drawn from two survey pa-

pers, [9, 23], which define several group and pairwise measures of

diversity.

3 MODEL
In this section we describe the agent voting model that we study.

We assume there is a set of alternatives, 𝐴 = {𝑎∗, 𝑎−}, where 𝑎∗
is, objectively, the correct outcome and 𝑎− represents the other

alternative.
1
There is a set of 𝑛 voters, 𝑉 = {1, . . . , 𝑛}. Each voter

1
This restriction to two alternatives is common in the literature [3, 10, 20]

receives a noisy, independent signal as to which is the correct

outcome, which we refer to as the voter’s accuracy. In particular,

we say that each voter 𝑖 ∈ 𝑉 has accuracy level 𝑞𝑖 > 0.5 which is

the probability that they view 𝑎∗ as the best alternative.
Voters have two actions available to them. First, a voter is able

to directly cast a vote by indicating their chosen alternative to the

voting mechanism. However, we assume that direct voting is costly.

That is, if voter 𝑖 decides to vote directly, then they incur cost 𝑐𝑖 ≥ 0.

This cost captures the “effort" of voting. Alternatively, they may

delegate their vote to another voter.

Definition 3.1 (Delegation). Let 𝑖 ∈ 𝑉 be a voter. A delegation

occurs when 𝑖 selects some 𝑗 ∈ 𝑉 and grants them permission to

vote on their behalf. We call voter 𝑖 the delegator and voter 𝑗 the

delegate.

If voter 𝑖 delegates to another agent 𝑗 , then they pass all respon-

sibility of voting to the delegate, 𝑗 , including ceding all control as to

which alternative will be voted for. Furthermore, it is possible for a

delegated vote to be further delegated. That is, if voter 𝑖 delegated to

voter 𝑗 , then voter 𝑗 may also delegate it (and 𝑖’s) voting privileges

to voter 𝑘 . We let 𝑑 (𝑖) be the delegation action of voter 𝑖 and let

𝑑∗ (𝑖) represent the recursive application of 𝑑 (𝑖) until a fixed point

is reached. We refer to the final set of active voters as gurus.

Definition 3.2 (Guru). Voter 𝑗 ∈ 𝑉 is a guru if 𝑗 ∈ {𝑑∗ (𝑖) |𝑖 ∈ 𝑉 }.
We let 𝐺 (𝑉 ) denote the set of gurus given 𝑉 . We say that 𝑗 is the

guru of 𝑖 if 𝑗 = 𝑑∗ (𝑖).

Observe that it is possible that 𝑖 delegates to itself, and so 𝑖 is its

own guru when 𝑑∗ (𝑖) = 𝑖 .

Voters always have full knowledge of the current delegation

structure and each voter’s accuracy. Voters exist on a complete

network and may delegate to any voter, unless that delegation

would cause a cycle.

Through our analysis we focus on the settingwhere the following

procedure is used to determine delegations:

(1) Initially, ∀𝑖 ∈ 𝑉 , 𝑑 (𝑖) = 𝑖 .

(2) Proceeding in arbitrary order, each voter chooses a delegate

(possibly unchanged from their current delegate).

(3) Step (2) is repeated until a round passes in which no voter

alters their delegation.

We assume that delegation decisions happen before any voting

actions can be taken. Once the set of gurus has been identified (i.e.

{𝑑∗ (𝑖) |𝑖 ∈ 𝑉 } has been determined), then all gurus submit their

ballot to a central authority, which uses weighted majority voting

to determine which alternative is selected. The weight, 𝑤 𝑗 , of a

guru 𝑗 ∈ 𝑉 is a function of the number of voters it is representing
through delegation actions. In particular, for any 𝑗 ∈ 𝑉

𝑤 𝑗 =

{
0 if 𝑗 ∉ 𝐺 (𝑉 )
|{𝑣 ∈ 𝑉 | 𝑗 = 𝑑∗ (𝑣)}| otherwise

As mentioned earlier, the action of voting is costly, with agent 𝑖

incurring cost 𝑐𝑖 ≥ 0 is actively voting. We assume, however, that

if 𝑤𝑖 = 0 then the agent does not vote (since they are not a guru)

and thus incur no cost.

Next we introduce the utility function that is used by voters to

make delegation decisions.



3.1 Formulating Utility Functions for Gurus
Previous work used a similar model of liquid democracy where

agents had different levels of accuracy [3]. However, they assumed

that the underlying utility model each voter depended on the accu-

racy of their guru, namely 𝑢𝑜𝑙𝑑 (𝑖) = 𝑞𝒅∗ (𝑖) . While appropriate for

their analysis, we argue that there are many application-domains

for which this assumption is not appropriate. Instead, we introduce

an alternative utility function which we believe has broader ap-

plicability and analyse it to better understand the importance of

modelling decisions.

Since voters do not benefit from concealing their accuracy and

delegation we assume each voter has full knowledge of the entire

problem instance. Voters are all aiming to select the same optimal

outcome and we are interested in maximizing the probability of this

outcome being selected. Thus, we argue, a utility function that ac-

curately represents the agents’ underlying goals is appropriate. We

achieve this by giving all voters the same utility: the exact chance

that the optimal candidate will be selected. Our utility function is:

𝑢𝑛𝑒𝑤 (𝑉 ,𝑑) =
𝑛∑

𝑙=𝑛
2

∑
𝑆 ∈𝐺𝑙

(
∏
𝑖∈𝑆

𝑞𝑖

∏
𝑗∉𝑆

1 − 𝑞 𝑗 )

where 𝐺𝑙 = {{𝑣𝑖 ∈ 𝑉𝑙 | 𝑑∗ (𝑖) = 𝑖} | 𝑉𝑙 ⊆ 𝑉 and

∑
𝑣𝑖 ∈𝑉𝑙 𝑤𝑖 = 𝑙}

contains all sets of gurus whose combined weights sum to 𝑙 . Each

value in the summation over 𝐺𝑙 corresponds to the probability

of exactly that set of gurus voting correctly, while all others vote

incorrectly. This is repeated for each value of 𝑙 greater than or equal

to half the total number of voters. If voting directly has a non-zero

cost, voter 𝑖 subtracts 𝑐𝑖 from 𝑢𝑛𝑒𝑤 to calculate its individual utility.

4 EQUILIBRIUM ANALYSIS
We now show that with our utility function, voters making sequen-

tial best-response updates to their delegations will always result in

a pure strategy Nash equilibrium. This applies to the case where

voting directly does not cost anything, and the case where there is

some small cost 𝑐𝑖 > 0 required to act as a guru.

Theorem 4.1. A pure strategy Nash Equilibrium always exists for
the effortless voting scenario.

Proof. The following procedure will result in a Nash Equilib-

rium: Begin by having all voters cast their votes directly. Choose

voters in arbitrary order and have them select the delegate that

will lead to the highest utility (i.e. any connected voter that will

not cause a cycle, or themselves). Repeat this until no voters will

increase their own utility by changing their delegation.

To confirm that this final state is a Nash Equilibrium, note that

all voters have the same utility function. Thus, any best response

action taken will never decrease any voter’s utility. When there are

a finite number of voters this means that the process will eventually

stop since there are a finite number of utility improvements that

can take place.

□

Theorem 4.2. A pure strategy Nash Equilibrium always exists for
the scenario where 𝑐𝑖 > 0.

Proof. Say that voter 𝑖 has utility of 𝑢 − 𝑐𝑖 while voting directly

and decides to delegate to voter 𝑗 , leading to utility of 𝑢 ′. This
means 𝑢 ′ > 𝑢 − 𝑐𝑖 and there are two cases:

(1) 𝑢 ′ > 𝑢: In this case, all voters delegating to 𝑖 (as well as all

other voters) will have strictly higher utility than before 𝑖’s

delegation to 𝑗 and the process of following best responses

will lead to a NE as above.

(2) 𝑐𝑖 > 𝑢 − 𝑢 ′ > 0: This means that 𝑖 has increased their utility

but all other voters have had their own utility reduced by an

amount up to 𝑐𝑖 . There are a number of possibilities here:

If 𝑗 is not a guru, their only actions are to (1) switch delega-

tions which will strictly increase the utilities of all players, or

(2) begin voting directly which implies that the new accuracy

𝑢 ′′ > 𝑢 ′ since 𝑢 ′′ − 𝑐 𝑗 > 𝑢 ′ which will also strictly increase

the utility of all players.

If 𝑗 is a guru when they receive 𝑖’s delegation, their only

action is to change delegations. Say 𝑗 ’s best response action

is to delegate to 𝑘 and their utility becomes 𝑢 ′′. If 𝑘 directly

or indirectly delegates to 𝑖 this would cause a cycle which

is not possible so 𝑘 must either vote directly, or delegate

in such a way that does not cause a cycle. If 𝑘 currently

delegates, the reasoning in the previous paragraph applies. If

𝑘 is a guru, the reasoning in this paragraph applies. In either

case, assuming a finite number of voters, the delegations will

reach a fixed point and there will be no more best response

actions to take.

□

Every delegation change is guaranteed to increase the utility

of the delegator so a clear upper bound on the number of actions

required to reach equilibrium is the total number of sets of dele-

gations. This is equivalent to the product of each voter’s network

degree:

∏𝑛
𝑖 𝑙𝑖 where 𝑙𝑖 is 𝑖’s degree. For our setting, with a fully

connected network there may be as many as 𝑂 (𝑛𝑛) states. While

some of these states may be easily discarded (e.g. it is easy to check

if having a single dictator is an equilibrium, delegation cycles are

disallowed) reducing this bound more generally proves complex.

However, in practice, we see voters quickly converge to a Nash

Equilibrium. Table 1 shows that elections of a tractable size require,

on average, very few best-response updates. Table 1 also shows

that while utility increases as a result of delegation (in fact, this is

guaranteed when voting directly is costless) it tends to increases

by a relatively small amount. Note that due to the size of 𝐺𝑙 in our

utility function evaluating significantly larger voter populations

in this manner is not possible. Recent work has found an efficient

way of calculating utility when voters all have identical weight (in

which case it is equivalent to the Poisson-Binomial function CDF)

[19]; extending this result to a weighted setting would be widely

useful future research.

5 USING LIQUID DEMOCRACYWITH
ENSEMBLES

Themodel described in Section 3 applies to voters choosing between

a single pair of alternatives. To evaluate the efficacy of liquid democ-

racy on real-world tasks we now show how this model maps to a

setting where each voter selects between many pairs of alternatives



𝑛 5 11 17

Actions 1.21 ± 0.71 3.18 ± 1.11 4.78 ± 1.43

Util Gain 0.035 ± 0.029 0.028 ± 0.018 0.017 ± 0.011

Start NE 0.17 0.01 0.0

Table 1: Mean and Std Dev of number of actions required
to reach Nash Equilibrium and increase in utility between
initial and NE states across 100 randomly initialized voter
populations for 𝑛 = 5, 11, and 17 voters. The third row shows
fraction of simulations in which the initial state was a Nash
Equilibrium.

simultaneously. In particular, we draw a parallel between voters

selecting an alternative and machine learning classifiers predicting

classes on a dataset then present results of several experiments

done in this setting.

Consider 𝑚 pairs of alternatives 𝐴𝑚 = {(𝑎∗
1
, 𝑎−

1
), ...(𝑎∗𝑚, 𝑎−𝑚)},

corresponding to the𝑚 examples within a two-class dataset. Each

of the 𝑛 classifiers receives noisy information about the correct

alternative in each pair from feature values in the dataset. Classifiers

have two actions available to them: First, they may directly predict

a class for each of the𝑚 examples (ie. vote𝑚 times). Unlike our

original model, there is no cost to direct action. Alternatively, they

may delegate to another classifier who will predict (vote) on their

behalf for all examples. We assume that each individual classifier

voting directly correctly classifies at least ⌈𝑚
2
⌉ examples.

Our original utility function focused on the accuracy of a group

of voters at selecting a single correct alternative. Nowwe are primar-

ily interested in the total number of examples correctly classified

by an ensemble of classifiers. If 𝐴win

𝑚 refers to the𝑚 alternatives

from 𝐴𝑚 that won each individual election then the accuracy of an

ensemble is acc = 1

𝑚 |{𝑎𝑖 if 𝑎𝑖 = 𝑎∗
𝑖
∀𝑎𝑖 ∈ 𝐴win

𝑚 }|.2 Our experiments

also consider a number of different delegation mechanisms, the

explanations of which are deferred to Section 5.2.

Since our focus is now on the accuracy of groups of classifiers,

the results from Section 4 no longer directly apply. Rather, we

now shift our attention to better understanding the chance that

delegations will benefit an ensemble of classifiers. Going forward

when we refer to a voter we are referring to a classifier voting as

described above, and use the terms interchangeably as best fits the

current discussion.

5.1 Chance of Weak Improvement from
Delegation

Here we show that the large majority of possible delegations lead to

a weak benefit for group accuracy. In particular, we show that from

all possible sets of ensembles where each classifier votes directly

very few of these guarantee that every possible initial delegation

reduces accuracy.

To do this we consider the votes of a set of classifiers with no

delegations. These can be treated as an 𝑛×𝑚 binary matrix 𝑃 where

𝑝𝑖 𝑗 is 1 if voter 𝑖 voted correctly on the 𝑗 th example and 0 otherwise.

2
While accuracy is not always the most responsible metric to consider we focus on it

here due to the natural parallel with our original model.

Each row must sum to at least ⌈𝑚
2
⌉ and any column that sums

to ⌈𝑛
2
⌉ or more indicates the corresponding example is classified

correctly.

An example 𝑗 is called pivotal if
∑𝑛
𝑖=1 𝑝𝑖 𝑗 = ⌈𝑛

2
⌉. That is, if it is

correctly classified by a minimum margin. Any voter that is correct

on a pivotal example is said to be a pivotal voter on that example, and

may be pivotal on several examples. Similarly, if a voter is incorrect

on example 𝑗 where
∑𝑛
𝑖=1 𝑝𝑖 𝑗 = ⌈𝑛

2
⌉ − 1 they are considered an

incorrect pivotal voter. We can now begin to establish an upper

bound on the number of states in which any individual delegation

would result in a decrease in accuracy (and thus, well-informed

greedy voters would make no delegations).

Theorem 5.1. If (1) in each pair of classifiers each member in the
pair is pivotal on an example that the other voter classifies incorrectly,
and (2) there are no incorrect pivotal voters then any single delegation
in an ensemble of equally weighted classifiers reduces group accuracy.

Proof. Say that voter 𝑖 delegates to voter 𝑗 and that example 𝑠𝑖 𝑗
is an example on which 𝑖 is pivotal and 𝑗 classifies incorrectly. 𝑠𝑖 𝑗
always exists by the first condition. If this delegation occurs 𝑠𝑖 𝑗 will

no longer be classified correctly and, since 𝑖 was not an incorrect

pivotal voter by the second condition, 𝑗 ’s increased weight will not

cause any incorrect examples to become correct.

□

Our goal is to show that very few matrices 𝑃 exist that satisfy

the conditions in Theorem 5.1. Our next result can be used directly

to give an upper bound on the number of such matrices.

Theorem 5.2. Any matrix 𝑃 that satisfies condition (1) in Theo-
rem 5.1 with 𝑛 voters must have at least 𝑛 pivotal examples.

Proof. Note that a prerequisite for satisfying (1) is that for each
pair of voters there exists a pair of correctly classified examples on

which each voter correctly classifies exactly one of the examples.

We proceed with proof by induction. For 𝑛 < 3 it is clear that

there are at least 𝑛 pivotal examples when (1) is satisfied. When

𝑛 = 3, consider a pair of voters and two examples. Each example is

correctly classified exactly once; adding a new voter and no new

examples while continuing to satisfy the condition is impossible

thus there must be at least 3 examples in order to satisfy (1).
Now we assume that any group of 𝑛 ≥ 3 voters requires at least

𝑛 examples and show that (1) cannot continue to be met when we

add a new voter and no new examples.

Denote the newly added voter as 𝑣𝑘 , the existing voters as 𝑉 =

{𝑣1, 𝑣2, ..., 𝑣𝑛}, and the examples required for 𝑉 to satisfy (1) as
𝐸𝑉 = {𝑒1, 𝑒2, ..., 𝑒𝑛}. By the induction assumption we know that

voters 𝑉 ′ = {𝑣1, 𝑣2, ..., 𝑣𝑛−1, 𝑣𝑘 } require (at least) 𝑛 examples, 𝐸𝑉 ′ .

If 𝐸𝑉 ∩ 𝐸𝑉 ′ ≠ 𝐸𝑉 then 𝑉 ∪ {𝑘} requires at least 𝑛 + 1 examples.

Otherwise, 𝐸𝑉 ′ = 𝐸𝑉 . Now it must be the case that voters 𝑣𝑘
and 𝑣𝑛 classify all examples in 𝐸𝑉 identically. To see why, consider

𝑉 ′′ = 𝑉 \ {𝑣𝑛} and the 𝑛−1 examples required for𝑉 ′′
to satisfy (1).

In order for each example in 𝐸𝑉 ′′ to remain pivotal any new voter

is confined to a particular classification on that example. Thus 𝑣𝑘
and 𝑣𝑛 must be identical on each example in 𝐸𝑉 ′′ and when they

are both added to 𝑉 ′′
two new examples are required in order to

satisfy (1), leading to 𝑛 + 1 examples.

□



Dataset Examples Categorical Numerical Missing

breast-cancer-w 699 0 9 yes

credit-approval 690 9 6 yes

heart 270 0 13 no

ionosphere 351 34 0 no

kr-vs-kp 3196 0 36 no

spambase 4601 0 57 no

Table 2: Description of datasets.

𝑛

𝑚 3 7 11 15

3 5.00e-02 - - -

7 6.25e-03 5.61e-03 - -

11 4.10e-03 5.47e-07 1.33e-04 -

15 3.60e-03 7.36e-08 2.79e-12 7.98e-07

Table 3: Examples of (an upper bound on) the ratio of the
number of states in which any delegation is harmful to the
total number of possible ensemble states the number of ex-
amples (𝑚) and the number of voters (𝑛) increase when there
are an equal number of voters and pivotal examples.

5.1.1 Counting Harmful Delegations. Using the limitation from

Theorem 5.2 we now show that the number of “harmful” vote

matrices 𝑃 guaranteeing a reduction in accuracy from any single

delegation is tiny when compared to the total possible number of

such matrices.

First, note that if we assume each voter is accurate on at least

⌈𝑚
2
⌉ examples (if they were not they could simply reverse their clas-

sifications to improve their accuracy), the total number of unique

voters is 𝑣unique =
∑𝑚
𝑐= ⌈𝑚

2
⌉
(𝑚
𝑐

)
. Voters in the same ensemble may

be identical to each other so the total number of possible ensembles

of size n is

(𝑛+𝑣unique−1
𝑛

)
.

We now consider an upper bound on the number of possible

harmful vote matrices. Assume there are 𝑛 pivotal examples and

each voter is correct on ⌈𝑛
2
⌉ of them. The number of possible voter

distributions on pivotal examples is 𝑣pivot =
( 𝑛
⌈𝑛
2
⌉
)
allowing up

to

(𝑣pivot
𝑛

)
sets of voters (chosen without repetition to satisfy (1)).

On the remaining𝑚 − 𝑛 examples, each voter must be correct on

⌈𝑚
2
⌉ − ⌈𝑛

2
⌉ to 𝑚 − 𝑛 of them. This gives a total of 𝑣remainder =∑𝑚−⌈𝑛

2
⌉

𝑐= ⌈𝑚
2
⌉−⌈𝑛

2
⌉
(𝑚−𝑛

𝑐

)
options for each remaining voter. Votes on the

remaining examples may be repeated across voters so there are(𝑛+𝑣remainder−1
𝑛

)
options here.

Putting this together gives an upper bound of

(𝑛+𝑣remainder−1
𝑛

) (𝑣pivot
𝑛

)
possible states where delegation will always be harmful. Table 3

gives some insight as to the proportion of states in which any single

delegation will be harmful, for certain values of𝑚 and 𝑛 and the

case when there are an equal number of voters and pivotal exam-

ples. As the size of the dataset and number of voters grows the

chance that delegation will allow for a benefit grows quickly.

dataset best full diverse max random

breast-cancer-w 0.951 0.943 0.944 0.951 0.94

credit-approval 0.87 0.862 0.863 0.868 0.861

heart 0.80 0.762 0.758 0.802 0.771

ionosphere 0.902 0.884 0.889 0.903 0.878

kr-vs-kp 0.921 0.905 0.909 0.909 0.881

spambase 0.883 0.869 0.866 0.884 0.862

Table 4: Accuracy of several types of ensemble on each
dataset averaged over 5, 7, and 9 voters with 3 and 5 gurus.

5.2 Experimental Setup
To evaluate the usefulness of liquid democracy on real-world tasks

we run experiments using 6 two-class datasets from the UCI Ma-

chine Learning Repository [15]. Table 2 contains brief summary

information about each dataset, note that examples with missing

feature values were left out of training.

We loosely base our experimental setup on that of [13]. As such

our ensembles are composed of decision trees using gini and entropy

critera with equal likelihood. The maximum depth of each tree was

chosen uniformly randomly between 1 and 4. All experiments were

implemented in Python 3.6 using the scikit-learn library for all ma-

chine learning functions [25]. Initially we also experimented with

ensembles that included SVM’s and Neural Networks with equal

probability as Decision Trees but found no significant difference in

performance beyond significantly increased training time.

With our experiments a primary goal was to evaluate a range of

conditions and understand when and by how much liquid democ-

racy might improve the accuracy of an ensemble. Thus, rather than

allowing voters to decide for themselves whether or not to delegate

at any time we use centralised mechanisms to have voters delegate

until a pre-set number of gurus, 𝑛final, exist. These mechanisms aim

to either increase independence of voters or to remove the least

accurate voters. All experiments are averaged over 5 trials with

different randomly initialized ensembles. In each trial we perform

10-fold cross validation on each ensemble type.

5.2.1 Classifier Diversity. A significant differences between our

earlier setting and the use of classifiers as voters is that we can-

not guarantee the independence of classifiers being trained on

real-world datasets. To ameliorate this issue we aim to increase

classifier/voter diversity when deciding upon delegations.

Diversity of classifiers is studied in depth in by [23] where they

introduce a number of metrics to measure diversity of both entire

ensembles and pairs of classifiers. Our experiments explored a

number of diversity metrics, including the disagreement and double-

fault measures and variants thereupon, and found the q-statistic
performed the best. It is defined as follows: For trained classifiers

𝑖 and 𝑗 , if 𝑁 11
is the number of samples both predicted correctly,

𝑁 10
is the number 𝑖 predicted correctly and 𝑗 incorrectly, etc. Then,

𝑄𝑖, 𝑗 =
𝑁 11𝑁 00 − 𝑁 01𝑁 10

𝑁 11𝑁 00 + 𝑁 01𝑁 10

5.2.2 Delegation Mechanisms. We now introduce the 5 delegation

mechanisms we explore in our experimental results.



(a) 9 voters, 5 gurus

dataset full diverse max random

breast-cancer-w 0.943 0.939 0.951 0.945

credit-approval 0.862 0.864 0.865 0.861

heart 0.772 0.768 0.785 0.766

ionosphere 0.883 0.874 0.91 0.883

kr-vs-kp 0.906 0.917 0.92 0.883

spambase 0.868 0.871 0.89 0.86

(b) 29 voters, results averaged
over 5, 15, and 25 gurus

full diverse max random

0.942 0.947 0.955 0.946

0.862 0.863 0.87 0.862

0.76 0.767 0.805 0.767

0.892 0.894 0.908 0.881

0.921 0.924 0.924 0.915

0.874 0.874 0.89 0.871

(c) 49 voters, results averaged
over 5, 15, and 25 gurus

full diverse max random

0.946 0.949 0.96 0.943

0.863 0.863 0.872 0.861

0.767 0.774 0.82 0.762

0.888 0.894 0.916 0.885

0.923 0.921 0.934 0.91

0.874 0.877 0.899 0.868

Table 5: Accuracy of each delegation method over several ensemble sizes and number of gurus. Accuracy tends to be higher in
max column but not significantly so.

Full: A standard ensemble with all voters equally weighted. This

corresponds to a setting with no delegations.

Best: An exhaustive search of all possible delegations from the

initial set of voters is performed and the delegations that lead to

the highest accuracy are used, regardless of the number of gurus.

Diverse: Each pair of voters is scored according to the q-statistic
diversity metric. In the most correlated pair of voters, the less

accurate voter delegates to the more accurate. If that delegation

would create a cycle the pair is skipped and the next most correlated

pair is considered. This repeats until the number of gurus is equal

to the predetermined amount, 𝑛final.

Max: The 𝑛final most accurate voters serve as gurus and all

other voters delegate to them dividing their weight as uniformly as

possible.

Random: Voters are removed from the ensemble at random

until the number of gurus is equal to 𝑛final. This is meant to serve

as a control and indicate whether Diverse and Max strategies are

useful delegation methods.

Nash: In arbitrary order each voter considers each delegation

they can make (including to themselves as a guru) and uses the

one they can make that will most improve group accuracy. This is

repeated until no voter wishes to change their delegation regardless

of the number of gurus.

5.3 Results
We present the results of three experiments, each designed to eval-

uate our system from a different perspective. First, we compare

the Best delegation mechanism to other mechanisms to determine

whether, in the most optimistic case, it is common for delegation to

lead to a significant accuracy improvement. Our second experiment

considers larger ensembles with varying size and number of delega-

tions to determine whether they become more beneficial with more

possible delegations. Finally, we explore the case when voters aim

to greedily maximize group accuracy until reaching an equilibrium

to better understand how often strictly beneficial delegations exist.

Together, these experiments analyze the optimal outcomes from del-

egation, present a range of more efficiently achievable results, and

show how often self-interested agents might be likely to delegate.

5.3.1 Optimal Delegations. We first show the maximum potential

benefit of delegations. Table 4 shows results of experiments when

comparing across each delegation mechanism. Results are averaged

for each dataset over ensembles with initial sizes of 5, 7, and 9

and each of 3 or 5 gurus. Due to the large number of possible

delegations it is impossible to examine all delegations in ensembles

of larger sizes. When best delegation results are compared with

the full ensemble there is no significant difference in their scores

on each test fold using a t-test with 𝑝 < 0.05. This shows a lack

of meaningful evidence for the benefit of liquid democracy in a

real-world situation.

5.3.2 Full Ensembles. Considering larger ensembles paints a simi-

lar picture. Table 5 compares results with up to 49 voters and 25

gurus. As 𝑛 increases there is often a small increase in the accu-

racy from delegation methods but it fails to become significant at

any size. The accuracy of all ensemble types increases with size,

however, the differences between each delegation method stay rel-

atively constant. While the max delegation strategy often leads to

higher accuracy than others, the majority of these results, as before,

are not significantly different from the full ensemble accuracy on a

t-test with 𝑝 < 0.05.

5.3.3 Delegation to Equilibrium. We also consider what outcomes

arise when voters are able to choose whether or not to delegate

until reaching equilibrium. Section 4 describes this process for

single-issue voters; extended to a classifier setting this means that

after each voter is trained they calculate what ensemble accuracy

would be for every possible single delegation they may make. If any

delegations lead to a strict improvement in accuracy they use the

one giving the most improvement. This is repeated for each voter,

sequentially, until no voter wishes to change their delegation.

Table 6 shows that delegation is very infrequently required for

ensembles to reach equilibrium. As the number of voters grows, it

becomes increasingly likely that the initial ensemble will not strictly

increase its accuracy from any single delegation. The average boost

in accuracy over all experiments in Table 6 is approximately 0.007,

showing further lack of meaningful benefit from delegation.

6 DISCUSSION
This paper has shown that liquid democracy can improve the accu-

racy of a group at identifying ground truth in a basic theoretical

setting. However, when we extend our model to a more practical

classification task this improvement fails to materialize. Specifically,

we have seen that under strong assumptions of agent knowledge,

delegation can always reach an equilbrium with weakly higher

group accuracy in a traditional ground-truth voting setting and



dataset 9 19 29 39 49

breast-cancer-w 0.44 0.34 0.26 0.06 0.18

credit-approval 0.12 0 0.02 0 0.02

heart 0.52 0.24 0.24 0.2 0.1

ionosphere 0.34 0.3 0.28 0.1 0.14

kr-vs-kp 0.32 0.16 0.16 0.12 0.14

spambase 1.24 0.82 0.46 0.54 0.36

Table 6: Average number of delegations required for voters
to reach a Nash equilibrium for increasing numbers of vot-
ers.

will almost always allow for weak improvement of accuracy when

extended to a machine learning setting. Experimentally we have

seen that even optimal delegations do not significantly improve

accuracy in small ensembles. In more realistically sized ensembles,

no efficiently computable delegation strategy signficantly improves

accuracy. We also considered the (perhaps more realistic) situation

where voters only care about the direct effect of their delegation.

This led to our highly informed voters simply not delegating as

delegation would not lead to immediate benefit.

While our model may not be directly applicable to real world

voting settings involving humans, our results do raise questions

about the practical benefit of delegations in such elections. If voters

do not see a clear benefit to themselves from delegating why should

they do it? A common answer is that voting directly can be costly,

but would simply making direct voting a more practical option not

provide a more ethical outcome?

6.1 Future Work
Direct followup to this work can focus on providing more explicit

theoretical bounds on the expected gain in accuracy from delega-

tions. General models of liquid democracy with unrestricted del-

egations have received little such analysis, as providing any clear

results is difficult. Another useful approach would be to provide

stronger axiomatic bounds on various forms of liquid democracy,

early work on this has been done in papers such as [12, 22].

More generally, however, more thought must be given to where

liquid democracy can be applied. Many papers present competing

solutions to numerous problems caused by delegation such as the

rise of dictators or delegation cycles, often relying on centralized

mechanisms to determine delegations. Such mechanisms may not

be realistic – will any human voter delegate when they don’t know

where there delegation will end up? If not, are there applications

(such as machine learning) where delegation can be shown to pro-

vide a benefit? Future research must address questions such as these

and should provide clear empirical evidence for the benefit of liquid

democracy.
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