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Abstract

We argue that there is a strong connection between ensemble learning and a delegative
voting paradigm - liquid democracy – that can be leveraged to reduce ensemble training costs.
We present an incremental training procedure that identifies and removes redundant classifiers
from an ensemble via delegation mechanisms inspired by liquid democracy. Through both
analysis and extensive experiments we show that this process greatly reduces the computational
cost of training compared to training a full ensemble. By carefully selecting the underlying
delegation mechanism, weight centralization in the classifier population is avoided, leading to
higher accuracy than some boosting methods. Furthermore, this work serves as an exemplar
of how frameworks from computational social choice literature can be applied to problems in
nontraditional domains.

1 Introduction

In the past several years, the training of machine learning systems has consumed increasingly
large amounts of data and compute. In the search for ever-improving performance, models have
grown larger, more data has been collected, and the cost of machine learning has grown while
performance only improves incrementally [16]. This leads to negative repercussions affecting privacy
by incentivizing mass data collection, increased development time due to the time taken to train
models, and significant environmental costs. It also limits access to the best-performing models to
those groups with enough resources to support storing massive amounts of data and training large
models. Recent advances have begun to consider learning from few examples for settings where
data is hard to generate or resources are limited [21] however this field is still in its early stages. We
propose adapting an existing paradigm of opinion aggregation to address the problem of compute
requirements during classifier ensemble training.

Ensemble learning for classification has long studied the problem of combining class predictions
from groups of classifiers into a single output prediction. Condorcet’s Jury Theorem, a well-known
result from social choice theory (predating ML research by 2 centuries), states that if voters attempt
to guess the correct outcome of some ground-truth decision then the majority vote is increasingly
likely to be correct as voters are added if all voters are independent and have accuracy above 0.5
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[14]. This situation corresponds very closely with ensemble learning - classifiers try to predict the
correct class of some example, often choosing from between 2 classes. The most significant difference
is that, in ensemble learning, classifiers are typically correlated. This has lead to a great deal of
research exploring the effect of diversity between ensemble members on ensemble performance [13].

This parallel demonstrates the strong connection between ensemble learning and social choice.
Other social choice results have also been applied to ensemble learning [8] with moderate success;
however, while a variety of standard voting rules can occasionally improve ensemble performance
over majority vote or other ensembling methods they do not address compute requirements and
may require additional compute. Further, while in practice ensembles do tend to improve with more
members this effect is limited and Condorcet’s Jury Theorem does not directly apply as each new
classifier is typically trained on data drawn from the same source and is not entirely independent
from other classifiers in the ensemble.

This paper introduces a connection between ensemble learning and an emerging social choice
paradigm – liquid democracy – in an attempt to mitigate the issues outlined above: increasing
training costs, and the possibility of having multiple highly similar classifiers in an ensemble. Liq-
uid democracy is a process of transitive, delegative voting wherein all voters may choose whether
to delegate their vote (and all their received delegations) to another voter or to vote directly with
weight corresponding to the number of delegations they have received. We use liquid democ-
racy to allow classifiers to “delegate” their classification decisions to higher-performing classifiers
within their ensemble. This paper describes a process of incremental training and delegation that
dramatically reduces the training and inference cost of large ensembles without impacting their
performance. Our approach provides several parameters which allow optimizing for either training
cost or accuracy.

The remainder of the paper is structured as follows: This section concludes with an overview of
the related work. Section 2 introduces our model formally, discusses the parallel between ensemble
learning and voting in social choice, and explains the metrics we are evaluating. Section 3 analyzes
our model and describes the expected reduction in cost from our training method. Our experimental
results are presented in Section 4 and Section 5 concludes with final remarks and a discussion of
future directions for our method.

1.1 Related Work

This work draws upon two distinct lines of research - liquid democracy and ensemble methods. We
review the most relevant material from each field.

1.1.1 Liquid Democracy

In liquid democracy, a number of papers have explored a setting wherein voters aim to find ground
truth on a single issue while we work in a setting wherein voters make ground truth decisions
across many issues. A theoretical line of research has established that finding the delegations which
maximize group accuracy is NP-hard even to approximate [11, 6, 3, 10]. However, an empirical
line of research demonstrates that in practice even some simple delegation mechanisms typically
outperform direct voting across a wide range of settings [1, 3]. We are aware of one prior paper
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applying liquid democracy to ensemble learning which found little benefit to accuracy from only a
single round of delegation [2]. In this work we explore multiple rounds of delegation and focus on
metrics beyond accuracy such as training cost and F1-score. Another area of work related to ours
studies liquid democracy from the perspective of binary aggregation [7]. In many ways this model
is similar to our own, however, voters are able to delegate on individual issues (whereas classifiers
in our setting delegate entirely to a single other classifier) and the focus of analysis is on rationality
of delegations.

1.1.2 Ensemble Pruning Methods

The potential benefit to accuracy from pruning ensembles was first proven by Zhou, Wu, and
Tang [24]. Since then, many pruning strategies have been explored. One survey divides most
approaches into ranking or search-based methods [19]. Ranking methods – which this work uses
– score each ensemble member based on some metric, often some combination of diversity and
accuracy, then remove the lowest scoring members. A key distinction of our approach is the
method of transferring weights from a pruned classifier to a remaining classifier. A different method
of weight transfer has been explored which shifts the weight of a pruned classifier to remaining
classifiers based on their similarity. However, the approach shows little positive effect from the
weight shifts [20]. Pruning in an incremental learning setting is explored in one paper which
develops a method of creating a new ensemble for each increment of data which is subsequently
pruned to reach a single final ensemble [22].

2 Delegative Ensemble Pruning

Our model bridges two fields of research - machine learning and social choice. We first describe our
algorithm and the learning problem we focus on, then connect it to the social choice framework
guiding our research.

We introduce a new algorithm for incrementally pruning and reweighting an ensemble during the
training process in order to reduce computational costs of training while maintaining or improving
accuracy. At the high level, during each time step our algorithm removes some number of classifiers
and increases the prediction weight of some remaining classifiers. Then the remaining classifiers
are trained on a new subset of data. This process stops only when the ensemble reaches some
pre-determined size or runs out of training data. In this way, fewer classifiers are trained at each
increment and less compute is spent on training than if the full ensemble were to be trained.

In more detail, we train an ensemble of classifiers V = {v1, v2, ..., vn} on a dataset of size m
partitioned into T subsets of roughly equal size, (Xtrain, Y train) = {Xtrain

1 , Y train
1 , ..., Xtrain

T , Y train
T }.

Weight vector Wt contains the weight associated with each classifier’s predictions at increment t,
initially set to 1; W0 = [1]n. During training, an estimate of the accuracy of each non-pruned
classifier is continually refined. A = [at,i] stores the training accuracy of each classifier vi at each
increment t while Q = [qt,i] contains the training accuracy of each classifier averaged over all
previous increments; qt,i = 1

t

∑
s≤t as,i. Typically we refer to the current weight and estimated

accuracy of classifier vi as wi and qi respectively, only including a time subscript where necessary.
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Figure 1: A possible outcome of incremental pruning on a small ensemble over 3 time steps. At
each increment, each remaining classifier updates its average accuracy according to its performance
on the most recent training data. At t = 1, each classifier is weighted equally and trained on one
increment of data to generate an estimate of their accuracy. v1 has the lowest estimated accuracy
while v4 has the highest. At t = 2, the weight of v1, the “weakest” classifier during t = 1 is
transferred to the “strongest” classifier, v4 and the 4 classifiers remaining with non-zero weight
train on another increment of data and estimates of their accuracy are refined. Finally, at t = 3, as
v3 is the classifier with the lowest accuracy estimate its weight is transferred to the more accurate
v1. After two increments of pruning, future training of the ensemble will use only 60% of the
original training cost. Note: The actual choice of which classifiers are removed and where their
weight is transferred depends upon parameters described in Section 3.

The class receiving predictions with the highest summed weight is the output of the ensemble
during inference.

During each time step t, each classifier with a non-zero weight is trained on (Xtrain
t , Y train

t ).
After training, a fixed proportion r of classifiers remain in the ensemble while 1 − r are removed
(by setting their weight to 0). For each classifier vi removed, some other classifier has its weight
increased by wi. Thus, total weight in the system remains constant at all times. We refer to the
number of remaining classifiers at the end of each time step as nfinal

t and parameterize the minimum
number of classifiers in the ensemble as nfinal.

The above loop of training the ensemble then pruning and reweighting is continued until one of
two conditions is met: (1) All T subsets of data have been used, or (2) nfinal classifiers remain with
non-zero weight. Finally, once finished, each classifier remaining in the ensemble is fully trained on
the entire training set. This final step is optional; while it improves the accuracy of the ensemble
it also increases the total training time.

Algorithm 1 summarizes the above procedure. An example of this delegative pruning process
on a small ensemble is shown in Figure 1. At each increment a single classifier is “removed” by
setting its weight to 0 and the estimated accuracy of each remaining classifier is updated based on
its performance on (Xtrain

t , Y train
t ). The final ensemble contains only 60% of the classifiers in the

original ensemble, leading to fewer classifiers that must be fully trained.
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2.1 Ensemble Pruning as Liquid Democracy

We draw a parallel between ensemble classification and voting. Ensembles can be seen as groups of
voters deciding on the outcome of an election with some objectively correct outcome [8, 5]. Each
classification task can be seen as an election where n classifiers “vote” on the correct class of an
example. So ensemble learning can be seen as m elections which all use the same set of “voters”
(i.e., classifiers)

Thus, we can express our model in social choice terms as a setting of n voters V = {v1, ..., vn}.
The probability that vi is correct on any given election, or their accuracy, is denoted qi and corre-
sponds to a classifier’s training accuracy. We denote the set of voters with higher accuracy than vi
as N+(vi) = {vj ∈ V |qj > qi}.

Our pruning procedure is based upon delegative voting in liquid democracy (LD) [17]. Within
LD, voters are either delegators or representatives; representatives are voters that vote directly and
are modelled as delegating to themselves. Delegators delegate their vote to another voter who then
represents them. If delegators have themselves received delegations, they also delegate all of the
delegations they have received. Each representative votes with a weight equal to the number of
delegations they have received. When viewing classifiers as voters, a delegation serves both to prune
a single classifier from the ensemble and to increase the weight of one of the classifiers remaining
in the ensemble.

More formally, a delegation function d : V → V gives the delegation of each voter. d(vi) = vj
indicates that vi delegates to vj . We say that vi votes directly by a self-delegation, d(vi) = vi.
Delegation applies transitively so that a delegation might “travel” several hops before reaching a
voter that votes directly. d∗(vi) refers to the repeated application of d(vi) until a fixed point (a
self-delegation) is reached. The representative of vi is d∗(vi). Throughout this paper we disallow
any delegation that would result in a cycle.

When equating classifiers and voters, delegation can be seen as a means of ensemble pruning.
At any time during training the representatives, denoted G(V ) = {d∗(vi)|vi ∈ V }, are exactly the
set of classifiers in an ensemble that have not been pruned. A classifier is pruned by making it
delegate to another classifier, which simultaneously removes it from the ensemble and increases
the weight of its new representative. The weight of each classifier is determined by whether they
delegate and how many delegations they receive. That is, the weight of each vi ∈ V is

wi =

{
0 if vi ̸∈ G(V )

|{vj ∈ V |vi = d∗(vj)}| otherwise

By using various delegation functions and treating classifiers in an ensemble as though they
are voters we can explore several approaches to pruning ensembles that have a basis in social
choice. The particular delegation functions we use are described in Section 3. Hereafter we refer
to classifiers and voters interchangeably.
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3 Delegation Mechanisms

Here we introduce delegation mechanisms. We include two baseline mechanisms – Direct (no
delegation) and Random – as well as mechanisms such as Random Better and Max that have
been explored throughout previous work [11, 1] and new mechanisms: Proportional Better and
Proportional Weighted.

Definition 3.1 (Delegation Mechanism). A delegation mechanisms is a tuple D = (g, p) consisting
of two functions:

1. A delegator selection function g : 2V → 2V selects nfinal
t representatives who will delegate

in increment t. This function implements the select pruned clfs() method on line 7 in
Algorithm 1.

2. A delegation probability function p : G(V ) × G(V ) → R≥0 which accepts as input two
representatives vi and vj and determines the probability that vi will delegate to vj . This
corresponds to the transfer weight() method on line 15 of Algorithm 1.

3.1 Delegator Selection Functions

We explore three delegator selection functions; two baselines grandom and gdirect as well as a more
intelligent function gworst each defined below. The Random delegation mechanism uses grandom and
the Direct mechanism uses gdirect; all other delegation mechanism use gworst.

Definition 3.2. Delegator Selection Function grandom(V, d) selects nfinal
t representatives uniformly

at random.

Definition 3.3. Delegator Selection Function gdirect(V, d) selects no representatives and performs
no delegation; return ∅.

Definition 3.4. Delegator Selection Function gworst(V, d) selects the nfinal
t representatives with the

lowest q (lowest average training accuracy over all previous increments).

3.2 Delegation Probability Functions

Delegation probability functions determine the probability that one representative will delegate
to a given voter (not necessarily a representative). Each delegation mechanism we explore uses
a different delegation probability function, corresponding to the function’s name (e.g. the Max
delegation mechanism makes use of pmax).

At each increment, a delegator selection function selects a number of representatives which will
be turned into delegators. For each of those representatives, the delegation probability function
calculates the probability of that representative delegating to each other voter (excluding them-
selves). Below we describe intuitively and mathematically how probabilities are calculated for each
mechanism.
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Definition 3.5. TheDirect Delegation Probability Function selects no delegates and has all voters
represent themselves. This is equivalent to the situation where each voter delegates to themselves.
Note that this function is redundant as gdirect does not select any new delegators.

pdirect(vi, vj) =

{
1 vi = vj

0 otherwise

Definition 3.6. The Random Delegation Probability Function selects delegates uniformly at
random for new delegators.

prandom(vi, vj) =
1

n
Definition 3.7. The Max Delegation Probability Function distributes delegated weight as evenly
as possible among voters. Let h(vi) = {qj |wj ≤ wk∀vj , vk ∈ N+(vi)} denote the competencies of
voters in N+(vi) with minimal weight. The least accurate voters delegate their weight to the most
accurate voter in h(vi), with ties broken randomly. This differs from existing “max” delegation
mechanisms [4] by selecting the least accurate voters to delegate then spreading their weight evenly
among potential representatives; in our setting, delegating only to the most accurate voter would
quickly cause a single voter to have the majority of the weight.

pmax(vi, vj) =

{
1 qj = max q ∈ h(vi)

0 otherwise

Definition 3.8. The Random Better Delegation Probability Function selects a delegate for each
delegator uniformly at random from voters with strictly higher accuracy [11].

prand better(vi, vj) =

{
1

|N+(vi)| j ∈ N+(vi)

0 otherwise

Definition 3.9. The Proportional Better Delegation Probability Function has delegators del-
egate to a representative with higher accuracy, however, the chance of delegating to a voter is
directly correlated with the difference between their accuracy and that of the delegator. Shown
here are delegation probabilities before normalization.

pprop better(vi, vj) ∝


qj−qi∑

vk∈N+(vi)
qk−qi

j ∈ N+(vi)

0 otherwise

Definition 3.10. The Proportional Weighted Delegation Probability Function returns delega-
tion probabilities based on both the accuracy difference between delegator and delegatee, as well
as the weight of the representative ultimately being delegated to. A lower weight leads to a higher
delegation probability. Shown here are delegation probabilities before normalization.

pprop weighted(vi, vj) ∝


1

wd∗(j)

qj−qi∑
vk∈N+(vi)

qk−qi
j ∈ N+(vi)

0 otherwise
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(a) (b)

Figure 2: Two possible states when an ensemble composed of 5 classifiers predicts the classes of 5
examples. A cell shows whether a particular voter (rows) is correct or incorrect in classifying each
example (columns). (a) All voters are pivotal and only examples m4 and m5 are pivotal. If any
non-pivotal examples m1, m2, or m3 were removed all voters in (a) would remain pivotal. (b) All
voters are pivotal and all examples are pivotal.

4 Chance of Harm from Delegation

While delegation can improve performance, it also brings the possibility of harm by reducing
ensemble accuracy. By reducing the number of active voters (that is, the number of classifiers
in the ensemble), the ensemble may approach dictatorships where a single voter has a controlling
weight and is less accurate than if input from multiple voters was required to agree in order to
make decisions. To give intuition about the extent to which delegations are “safe” and unlikely to
reduce accuracy of an ensemble we consider the number of initial delegation states (those where
d∗(vi) = vi ∀vi ∈ V ) where any single delegation will lead to a reduction in group accuracy. We
show that such “harmful” states exist but that they are vanishingly small in frequency and the vast
majority of possible states can weakly benefit from delegation.

Consider the votes of a set of voters with no delegations. Since each one has equal weight, these
can be treated as an n × m binary matrix P where pij = 1 if voter i voted correctly on the jth

example and 0 otherwise, respectively shown with a green check mark and a red x in Figure 2.
Any column with ⌈n2 ⌉ or more 1’s (check marks) indicates the corresponding example is classified
correctly. An example j is called pivotal if

∑n
i=1 pij = ⌈

n
2 ⌉. That is, if it is correctly classified by a

minimum margin. Any voter that is correct on a pivotal example is said to be a pivotal voter on
that example, and may be pivotal on several examples. Similarly, if a voter is incorrect on example
j where

∑n
i=1 pij = ⌈

n
2 ⌉ − 1 they are referred to as an incorrect pivotal voter.

We can now establish an upper bound on the number of states in which any individual delegation
would result in a decrease in accuracy (and thus, well-informed and well-meaning voters would make
no delegations).

Lemma 1. If every single delegation reduces group accuracy then each voter must be pivotal on at
least one example.

Proof. This can be simply shown by contradiction: By definition, if there exists a single voter who
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m

n 11 21 31 41 51
11 7.7e-08 2.6e-14 8.9e-21 3.0e-27 1.0e-33
21 3.0e-09 5.5e-17 9.9e-25 1.8e-32 3.2e-40
31 4.0e-10 1.1e-18 3.3e-27 9.6e-36 2.7e-44
41 9.2e-11 6.9e-20 5.2e-29 3.9e-38 2.9e-47
51 2.8e-11 7.5e-21 1.9e-30 5.2e-40 1.3e-49

Table 1: A loose upper bound on the fraction of states with n voters and a dataset of size m where
any single delegation reduces group accuracy.

is not pivotal on any example, they can delegate to any other voter without causing any examples
to change from being classified correctly to being classified incorrectly.

Note that this lemma does not hold in reverse. If every voter is pivotal on at least one example,
it is not the case that delegation must reduce group accuracy. For example, observe that v1 may
delegate to v2 in both parts of Figure 2 without changing group accuracy.

When considering the harmful effects of a single delegation we need only focus on pivotal
examples as they are the only correctly classified examples that may become incorrectly classified.
Thus the classification decisions on non-pivotal examples are irrelevant to this problem and our
theorem considers only the states that may occurs within pivotal examples.

Theorem 1. In an ensemble with n voters and m examples, the total number of ways in which
classification decisions can be made on pivotal examples such that every voter is pivotal is spivotaln,m =∑m

mp=2

(
n

⌈n
2
⌉
)mp. Without any restrictions the same examples could have stotaln,m =

∑m
mp=2 2

nmp

possible states.

The calculations required to support this theorem are found in Appendix A. By counting the
number of states in which every voter may be pivotal and comparing with the total number of
ways the same examples may be classified we can determine of the fraction of total states in which
every voter is pivotal. From Lemma 1, this will overcount the fraction of states where any single
delegation reduces group accuracy. Note that when calculating spivotaln,m and stotaln,m we are counting
only the (pivotal or total) number of states on mp columns/examples, and excluding the number of
ways in which the m−mp non-pivotal examples may be classified (which is irrelevant to counting

pivotal states). This enables us to compare spivotaln,m and stotaln,m without evaluating the total number
of possible states in either case.

Table 1 shows this loose upper bound on the proportion of states in which a single delegation
is necessarily harmful as n and m grow. With even moderately-sized datasets and ensembles it
becomes nearly impossible for delegation to inherently reduce accuracy. Thus, with almost any
delegation mechanism there is strong reason to expect that delegations may improve or, at least,
maintain accuracy.
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5 Ensemble Training Cost

We now discuss how to calculate the training cost (TC) of an ensemble. Denote the number of times
the training algorithm of the model underlying vi makes use of the training data as ei. Generally,
we define the training cost of vi as ei multiplied by m, the size of the training data. The sum of
training costs over all classifiers is the training cost of the ensemble.

TC =
∑
i∈V

mei (1)

However, during delegation the number of classifiers training is reduced over time, making
calculation of TC nontrivial. Here we describe the calculation of TC for a delegating ensemble
and show how parameter values affect it. This formula has two components: the first to capture
delegation cost and the second to capture the cost of fully training the final ensemble, V final.

TC = Delegation Cost +
∑

vi∈V final

mei

Delegation Cost: When calculating cost we assume that the dataset is of sufficient size to fully
delegate (note that this is not always the case with very small datasets). Here we calculate a
lower bound on delegation cost. In practice, issues such as avoiding delegation cycles may slightly
increase the number of increments needed.

The cost depends upon increment size u (the number of examples trained upon in each incre-
ment), delegation rate 1− r (r denotes the fraction of voters that do not delegate in an increment),
number of increments z, initial number of voters n, and final number of representatives nfinal; it is
the geometric series,

z∑
i=0

unri = un(
1− rz+1

1− r
)

The minimum number of increments can be calculated as a function of n, nfinal, and r by noting
that delegation continues until the number of active voters is equal to nfinal.

nrz = nfinal

Giving,

z =
log(nfinal/n)

log(r)

Combining the formulas above results in a function for calculating delegation cost based on n,
nfinal, and r. We leave out increment size, u, from our calculation as it is a constant factor. Figure 3
shows this lower bound on delegation cost for a range of parameters. Somewhat surprisingly, there
is very little difference between differing numbers of final representatives at the same delegation
rate. This is due to the fact that a smaller number of representatives has a lower training cost but
a higher number of increments.
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Figure 3: The lower bound on delegation cost as nfinal and delegation rate are varied.

Cost to Train Full Ensemble: The cost for fully fitting an ensemble post-delegation varies based
upon training data size, number of remaining representatives, and how many iterations of training
must be performed with each representatives. We count the number of iterations over the training
data taken to train each classifier and multiply by the size of the training set. Summing over all
remaining classifiers gives the training cost of the final ensemble.

6 Experiments

We empirically demonstrate the benefits of our training process. The experiments presented here are
implemented using Python 3.8. The classifier we use in our ensembles is Scikit-learn’s SGDClassifier
with default parameters, varying in their random initializations. Each experiment uses different
parameters which are described subsequently although, in each experiment, nfinal = 10. We evaluate
our model based on several datasets found in the UCI Machine Learning Repository [12]. Table 2
details the size and feature types of each dataset. All of the datasets studied in this work have two
classes.

When evaluating our ensembles we focus upon three primary dimensions: (1) the performance
of the ensemble itself, in terms of test accuracy and F1 score, (2) the training cost of each ensemble
relative to the cost of fully training an ensemble of n classifiers, and (3) the weight distribution
within the ensemble. Weight does not directly impact the performance of the ensemble but high
centralization of weight can lead to more sensitivity to outliers and removes many advantages of
using ensembles.

6.1 Training Cost of Comparison Methods

Our experiments compare training cost of delegated ensembles with the training cost of various
parameterizations of Adaboost, a powerful ensemble boosting algorithm [9]. Specifically, we use
the implementation of Adaboost provided in sklearn [18].
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Dataset Size # Categorical # Numerical

breast-cancer-w 699 0 9
credit-approval 690 9 6
heart 270 6 7
ionosphere 351 34 0
kr-vs-kp 3196 0 36
online-shopper 12330 8 10
occupancy-detection 20560 0 6
spambase 4601 0 57

Table 2: Description of datasets used. All have two classes and are found in the UCI Machine
Learning Repository [12].

We calculate the training cost of Adaboost as in Equation 1 by counting the number of times
in which each classifier in an ensemble has seen each example in the training set. Specifically, we
sum the sklearn variable n iter for each classifier within the boosted ensemble. The result is the
training cost of the ensemble.

6.2 Optimal Parameter Values

Three parameters most directly affect both the accuracy and cost of our training process: delegation
rate, initial number of voters, and increment size. We explore a range of values for each of these
parameters and present the results in Figure 4. Each hexagon in these ternary graphs represents
average ensemble accuracy on test data after 50 trials with one set of parameters. In each trial,
classifiers are created with new random seeds, the dataset shuffled, and new test/train data sampled.

The accuracy corresponds to the colour bar underneath the figure with lighter values indicating
higher accuracy. The parameter values aligned with each cell can be found by the direction of
tick marks outside the graph. The bottom axis, delegation rate, goes “up and to the right”.
Accordingly, the highest accuracy with the max delegation mechanism (top left in Figure 4) is
found when increment size is 65 or 85, delegation rate is 0.05, and ensemble size is 200 or 350.

Across delegation methods this parameter search generally finds that large increment size, a
relatively small ensemble, and a low delegation rate lead to the highest accuracy. This strongly
indicates a set of parameters to use in subsequent experiments in order to maximize accuracy.
However, note that calculations in Section 5 show low delegation rate to greatly increase training
cost, thus presenting a trade-off between ensemble performance and training cost.

6.3 Ensemble Accuracy During Delegation

In order to better illustrate the dynamics of delegation, Figure 5 shows an experiment with pa-
rameters designed to lead to many delegation steps. Here we present results of an experiment
averaged over 500 trials on the spambase dataset with increment size of 25, delegation rate of 0.2,
and ensemble size of 350. Appendix B shows the same experiment for all other datasets.
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Figure 4: Test accuracy of fully trained ensemble across delegation methods as parameters affecting
accuracy are varied. Results displayed are from the spambase dataset. Random delegations are
omitted as they perform significantly worse than the displayed delegation mechanisms; Direct dele-
gations are omitted as increment size and delegate rate do not affect Direct ensemble performance.

Figure 5 (left) plots the test accuracy of the partially trained ensemble at each time step
during delegation. The y-axis shows accuracy of the ensemble at the current time step (accuracy
on the entire test set; the same at each step). The x-axis shows the number of representatives
which corresponds exactly with time step. On the Kolmogorov-Smirnov and Mann-Whitney U
tests, the difference between final test accuracy of each delegation method is statistically significant
(p < 0.01). While Proportional Weighted delegations give the highest accuracy, they are only
slightly more accurate than Max delegations. While all delegation methods (aside from the baselines
of Direct and Random) quickly plateau at a similar accuracy, Proportional Weighted is able to
undergo significantly more delegation without a reduction in accuracy. This leads to a final ensemble
with much lower inference cost than if delegation had stopped at the time step when 75 classifiers
remained as representatives; where other delegation methods had peak accuracy.

The advantage of Proportional Weighted is further demonstrated by considering the final weight
distribution across classifiers in the ensemble. For the same experiment, Figure 5 (right) shows that
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Ensemble breast-cancer-w credit-approval heart ionosphere
Acc F1 Cost Acc F1 Cost Acc F1 Cost Acc F1 Cost

Direct 0.907 0.926 1 0.628 0.585 1 0.584 0.59 1 0.854 0.765 1
Prop W Acc 0.907 0.927 0.782 0.631 0.586 0.817 0.573 0.574 0.9 0.853 0.762 0.894
Prop W Cost 0.9 0.92 0.033 0.609 0.584 0.036 0.565 0.547 0.035 0.802 0.716 0.034
Ada DT Full 0.953 0.932 0.039 0.818 0.833 0.07 0.758 0.783 0.027 0.916 0.937 0.031
Ada DT Small 0.957 0.938 0.001 0.852 0.862 0.002 0.803 0.824 0.001 0.896 0.921 0.001
Ada SGD Full 0.965 0.95 0.014 0.653 0.681 0.007 0.683 0.718 0.01 0.861 0.898 0.025
Ada SGD Small 0.965 0.95 0.013 0.65 0.674 0.007 0.678 0.718 0.009 0.861 0.898 0.015
Ensemble kr-vs-kp occupancy-det online-shoppers spambase

Acc F1 Cost Acc F1 Cost Acc F1 Cost Acc F1 Cost
Direct 0.91 0.903 1 0.946 0.964 1 0.869 0.927 1 0.86 0.88 1
Prop W Acc 0.947 0.943 0.269 0.94 0.96 0.055 0.843 0.906 0.058 0.909 0.927 0.198
Prop W Cost 0.908 0.902 0.026 0.916 0.936 0.029 0.768 0.817 0.029 0.869 0.89 0.029
Ada DT Full 0.966 0.968 0.02 0.99 0.978 0.009 0.888 0.605 0.019 0.934 0.916 0.026
Ada DT Small 0.946 0.948 0.001 0.989 0.977 0 0.89 0.62 0.001 0.916 0.891 0.001
Ada SGD Full 0.941 0.944 0.06 0.984 0.966 0.005 0.878 0.447 0.012 0.786 0.719 0.013
Ada SGD Small 0.91 0.915 0.01 0.984 0.966 0.005 0.879 0.444 0.011 0.791 0.742 0.012

Table 3: Accuracy, F1 score, and Training Cost (relative to Direct ensembles) when comparing
a variety of Adaboost methods against two parameterizations of a delegating ensemble. Prop
W Acc uses parameters aimed at increasing the accuracy of the ensemble while Prop W Cost
uses parameters intended to reduce training cost. NOTE : Bold values indicate when a delegating
ensemble outperforms at least one Adaboost method.

throughout training Proportional Weighted consistently requires a higher number of classifiers in
agreement with each other in order to make a classification decision. This shows a much lower
centralization of weight resulting from Proportional Weighted which leads to fewer dictatorships.
When one, or very few, classifiers hold the majority of weight then classification decisions can
become much less stable and accuracy decreases.

Figure 5: (left) Test accuracy during training on spambase dataset, averaged over 500 trials.
(right) Minimum majority size during training on the spambase dataset.

6.4 Comparison with Other Ensemble Methods

Our final experiment uses parameters chosen based on the results of the parameter sweep in subsec-
tion 6.2. We ran two sets of experiments – one aimed at maximizing accuracy and another aimed at
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reducing training cost. The accuracy maximization experiments used an increment size of 65 and
a delegation rate of 0.05 while the cost minimization experiments used an increment size of 25 and
a delegation rate of 0.85. All experiments used an ensemble of 350 classifiers and we average the
results over 50 trials on each dataset. On most datasets Proportional Weighted generally (but not
always) resulted in the best performance of delegating ensembles; for simplicity we present results
of Proportional Weighted here and show results for all delegation methods in Appendix C.

We compare the above experiments with direct ensembles making no delegations and four
versions of Adaboost varied along two parameters: DT/SGD and Full/Small. Ada DT uses a
decision tree as the underlying classifier (using sci-kit learn’s default parameters) while Ada SGD
uses an SVM (with default parameters). Ada Full could use up to 350 classifiers (the size of the
initial ensemble) while Ada Small used up to 10 classifiers (the amount in the fully delegated
ensembles).

In Table 3 we show the accuracy, F1-score and training cost relative to Direct ensembles (i.e.
the case of no delegation). Prop W Acc refers to results from Proportional Weighted delegations
using the accuracy-maximizing parameters while Prop W Cost refers to results from Proportional
Weighted delegations using the cost-minimizing parameters. Note that we bold only Prop W Acc
and Prop W Cost; bold values indicate beating at least one of the Adaboost methods.

Proportional Weighted is able to dramatically reduce training cost from the full ensemble and
while the difference between experiments optimizing for accuracy and those optimizing for cost is
clear there is only a mild increase in accuracy/F1 Score for a significant increase in cost. When
comparing to Adaboost we see that accuracy and cost are similar in many instances and on larger
datasets (bottom row) Prop W Acc outperforms Adaboost in many cases.

7 Discussion

This paper proposes a novel application of liquid democracy to ensemble learning. Using delegations
with incremental training of ensembles we are able to dramatically reduce the training cost of
ensembles while improving accuracy over a full ensemble. We explore a variety of delegation
procedures and show that the Proportional Weighted mechanism outperforms other mechanisms
on both accuracy and training cost. Our procedure is able to provide higher accuracy than multiple
forms of Adaboost with underlying SGD or Decision Tree classifiers. The parameterization of
our algorithm allows for direct management of the trade-off between training cost and accuracy.
Delegation lends itself naturally to a method of ensemble pruning that scales very well with the
initial number of classifiers and reliably produces a high-accuracy ensemble with low training cost.

Our results open future work dedicated to identifying more powerful delegation mechanisms,
theoretical analysis of delegation mechanism quality, and a study of alternative delegation schedules
- in this work delegation always proceeds at a constant rate but that need not always hold true.
Delegation may also provide an intuitive model for the type of multi-domain classification studied
by [23] by using delegation to quickly transfer weight to domain experts within an ensemble as
domains shift.

Our delegative training procedure can be immediately applied for use by existing ensembles. It
is, however, conceptually well suited for two particular application areas. For very large datasets
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(or when very little memory is available) it is possible to skip the final step of fully training the
ensemble and use this method for out-of-core learning, where the entire training dataset cannot all
fit into memory [15]. Our method could also be applied to online learning by training on data in
batches as it becomes available.

A notable practical limitation of this procedure is that the incremental training procedure we
rely upon trains each classifier on new data without forgetting previously learned data. This is well
supported by many model types such as SVMs and neural networks, but training algorithms to use
incremental training with some models, such as Decision Trees, are less widely used (and are not
guaranteed to exist for every model type).
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Algorithm 1 Training and Pruning Algorithm. fit and partial fit methods refer to methods
in the sklearn library for each model type [18]. select pruned clfs and transfer weight are
defined in Section 3.

Input: V, r, nfinal, T,Xtrain, Y train

1: W ← [1]n

2: Q← [1]n

3: Xtrain, Y train ← {Xtrain
1 , Y train

1 , ..., Xtrain
T , Y train

T }
4: for t ∈ T do
5: for vi ∈ V do
6: if wi ̸= 0 then
7: partial fit(vi, Xtrain

t , Y train
t )

8: Qt,i ← mean({qs,i ∀s ≤ t})
9: end if

10: end for
11: V remove

t ← select pruned clfs(V,Q,W, r)
12: if V remove

t = ∅ then
13: break

14: end if
15: for vi ∈ V remove

t do
16: if |{w|w ̸= 0∀w ∈W}| ≤ nfinal then
17: break

18: end if
19: transfer weight(wi, V,W,Q)

20: wi ← 0
21: end for
22: end for
23: for vi ∈ V do
24: if wi ̸= 0 then
25: fit(vi, Xtrain, Y train)

26: end if
27: end for
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A Chance of Weak Improvement from Delegation

Theorem 2. In an ensemble with n voters and m examples, the total number of ways in which
classification decisions can be made on pivotal examples such that every voter is pivotal is spivotaln,m =∑m

mp=2

(
n

⌈n
2
⌉
)mp. Without any restrictions the same examples could have stotaln,m =

∑m
mp=2 2

nmp

possible states.

Proof. During this proof we consider each possible classification outcome as a separate state, see
Figure 2 for a visualization of 2 states; this can be thought of as a matrix with n rows and m
columns where each cell can take only binary values. The cell at position (i, j) refers to whether or
not voter i classified example j correctly. We refer to voter predictions, and the predictions made
on an example as rows and columns respectively.

Say there are mp pivotal examples in some initial state. In order for each voter to be pivotal
at least once, 2 ≤ mp ≤ m. We can obtain an upper-bound estimate on the fraction of states in
which delegation is harmful by counting the number of possible states where every voter is pivotal
(Lemma 1 shows that every harmful state meets this condition) and comparing it to the total
number of possible outcomes. We count, for some mp, the number of ways in which mp columns

on n rows can be arranged such that all voters are pivotal. Denote this spivotaln,mp and compare it with
the total number of ways to arrange those mp columns, denoted stotaln,mp

.

In practice, we calculate only the ratio of spivotaln,mp and stotaln,mp
. The m−mp columns that are not

pivotal have the same number of states in each case so we exclude them from our calculation.
The number of ways to construct a single pivotal column of n rows is

(
n

⌈n
2
⌉
)
. Extended to mp

columns we get
(

n
⌈n
2
⌉
)mp . Summing over all possible values of mp we arrive at a loose upper bound

on the total number of possible states where every voter is pivotal on m examples and n voters:

spivotaln,m =
m∑

mp=2

(
n

⌈n2 ⌉

)mp

Whereas, the number of ways to fill in the same columns with no regard for whether or not they
are pivotal is simply the number of possible states of an n ×mp binary matrix, or 2nmp . Which,
summed over all values of mp becomes,

stotaln,m =
m∑

mp=2

2nmp

B Results for All Datasets

Below we show for each dataset the figures presented for the spambase dataset in the main text:
(1) accuracy of each delegation mechanisms during the parameter sweep, (2) test accuracy during
training of each delegation mechanism, and (3) the minimum number of voters required to form
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a majority of weight during training. Due to its size, we show only the parameter sweep results
for the occupancy-detection dataset as they are averaged over 50 trials while the test accuracy and
minimum majority size are averaged over 500 trials.
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B.1 breast-cancer-wisconsin

Figure 6: Test accuracy of fully trained ensembles as parameters varied. Results from breast-
cancer-wisconsin dataset.

Figure 7: (left) Test accuracy during training on breast-cancer-wisconsin dataset, averaged over
500 trials. (right) Minimum majority size during training on the breast-cancer-wisconsin dataset.
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B.2 credit-approval

Figure 8: Test accuracy of fully trained ensembles as parameters varied. Results from credit-
approval dataset.

Figure 9: (left) Test accuracy during training on credit-approval dataset, averaged over 500 trials.
(right) Minimum majority size during training on the credit-approval dataset.
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B.3 heart

Figure 10: Test accuracy of fully trained ensembles as parameters varied. Results from heart
dataset.

Figure 11: (left) Test accuracy during training on heart dataset, averaged over 500 trials. (right)
Minimum majority size during training on the heart dataset.
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B.4 ionosphere

Figure 12: Test accuracy of fully trained ensembles as parameters varied. Results from ionosphere
dataset.

Figure 13: (left) Test accuracy during training on ionosphere dataset, averaged over 500 trials.
(right) Minimum majority size during training on the ionosphere dataset.
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B.5 kr-vs-kp

Figure 14: Test accuracy of fully trained ensembles as parameters varied. Results from kr-vs-kp
dataset.

Figure 15: (left) Test accuracy during training on kr-vs-kp dataset, averaged over 500 trials.
(right) Minimum majority size during training on the kr-vs-kp dataset.

25



B.6 occupancy-detection

Figure 16: Test accuracy of fully trained ensembles as parameters varied. Results from occupancy-
detection dataset.
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B.7 online-shoppers

Figure 17: Test accuracy of fully trained ensembles as parameters varied. Results from online-
shoppers dataset.

Figure 18: (left) Test accuracy during training on online-shoppers dataset, averaged over 500 trials.
(right) Minimum majority size during training on the online-shoppers dataset.
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B.8 spambase

Figure 19: Test accuracy of fully trained ensembles as parameters varied. Results from spambase
dataset.

Figure 20: (left) Test accuracy during training on spambase dataset, averaged over 500 trials.
(right) Minimum majority size during training on the spambase dataset.
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Ensemble breast-cancer-w credit-approval heart ionosphere
Acc F1 Cost Acc F1 Cost Acc F1 Cost Acc F1 Cost

Direct Acc 0.907 0.926 1 0.628 0.585 1 0.584 0.59 1 0.854 0.765 1
Max Acc 0.908 0.928 0.782 0.632 0.588 0.818 0.578 0.574 0.901 0.852 0.761 0.895
Rand B Acc 0.907 0.927 0.782 0.628 0.584 0.83 0.569 0.571 0.904 0.852 0.76 0.895
Prop B Acc 0.908 0.928 0.782 0.63 0.586 0.817 0.573 0.571 0.9 0.853 0.763 0.894
Prop W Acc 0.907 0.927 0.782 0.631 0.586 0.817 0.573 0.574 0.9 0.853 0.762 0.894
Random Acc 0.907 0.926 0.783 0.627 0.584 0.816 0.586 0.597 0.9 0.854 0.767 0.895
Ada DT Full 0.953 0.932 0.039 0.818 0.833 0.07 0.758 0.783 0.027 0.916 0.937 0.031
Ada DT Small 0.957 0.938 0.001 0.852 0.862 0.002 0.803 0.824 0.001 0.896 0.921 0.001
Ada SGD Full 0.965 0.95 0.014 0.653 0.681 0.007 0.683 0.718 0.01 0.861 0.898 0.025
Ada SGD Small 0.965 0.95 0.013 0.65 0.674 0.007 0.678 0.718 0.009 0.861 0.898 0.015
Ensemble kr-vs-kp occupancy-det online-shoppers spambase

Acc F1 Cost Acc F1 Cost Acc F1 Cost Acc F1 Cost
Direct Acc 0.91 0.903 1 0.946 0.964 1 0.869 0.927 1 0.86 0.88 1
Max Acc 0.946 0.942 0.272 0.925 0.95 0.056 0.78 0.828 0.059 0.909 0.927 0.197
Rand B Acc 0.943 0.94 0.272 0.929 0.954 0.056 0.719 0.764 0.059 0.897 0.918 0.197
Prop B Acc 0.946 0.942 0.269 0.914 0.94 0.055 0.784 0.84 0.058 0.905 0.924 0.198
Prop W Acc 0.947 0.943 0.269 0.94 0.96 0.055 0.843 0.906 0.058 0.909 0.927 0.198
Random Acc 0.897 0.89 0.309 0.906 0.923 0.056 0.737 0.777 0.058 0.795 0.807 0.198
Ada DT Full 0.966 0.968 0.02 0.99 0.978 0.009 0.888 0.605 0.019 0.934 0.916 0.026
Ada DT Small 0.946 0.948 0.001 0.989 0.977 0 0.89 0.62 0.001 0.916 0.891 0.001
Ada SGD Full 0.941 0.944 0.06 0.984 0.966 0.005 0.878 0.447 0.012 0.786 0.719 0.013
Ada SGD Small 0.91 0.915 0.01 0.984 0.966 0.005 0.879 0.444 0.011 0.791 0.742 0.012

Table 4: Accuracy, F1 Score and Training Cost for all delegation mechanisms using accuracy
maximizing parameters compared with each variety of Adaboost used. Bold values indicate when
a delegating ensemble outperforms at least one Adaboost method.

C Complete Accuracy and Cost Results

Table 4 and Table 5 show results for all delegations using, respectively, the accuracy maximizing
and cost minimizing parameters described in subsection 6.4.
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Ensemble breast-cancer-w credit-approval heart ionosphere

Acc F1 Cost Acc F1 Cost Acc F1 Cost Acc F1 Cost
Direct Cost 0.909 0.927 1 0.616 0.587 1 0.598 0.625 1 0.844 0.758 1
Max Cost 0.881 0.897 0.033 0.612 0.575 0.036 0.586 0.62 0.035 0.799 0.71 0.034
Rand B Cost 0.87 0.886 0.033 0.595 0.563 0.036 0.539 0.503 0.035 0.766 0.68 0.034
Prop B Cost 0.867 0.886 0.033 0.593 0.541 0.036 0.555 0.517 0.035 0.754 0.673 0.034
Prop W Cost 0.9 0.92 0.033 0.609 0.584 0.036 0.565 0.547 0.035 0.802 0.716 0.034
Random Cost 0.863 0.881 0.032 0.595 0.521 0.037 0.531 0.484 0.035 0.723 0.631 0.033
Ada DT Full 0.956 0.937 0.039 0.825 0.84 0.067 0.751 0.778 0.027 0.917 0.937 0.031
Ada DT Small 0.954 0.934 0.001 0.858 0.868 0.002 0.79 0.814 0.001 0.896 0.921 0.001
Ada SGD Full 0.963 0.947 0.014 0.654 0.681 0.008 0.68 0.709 0.009 0.861 0.897 0.027
Ada SGD Small 0.963 0.947 0.013 0.657 0.689 0.008 0.679 0.712 0.008 0.856 0.894 0.016

Ensemble kr-vs-kp occupancy-det online-shoppers spambase

Acc F1 Cost Acc F1 Cost Acc F1 Cost Acc F1 Cost
Direct Cost 0.9 0.888 1 0.938 0.96 1 0.82 0.878 1 0.854 0.873 1
Max Cost 0.885 0.877 0.026 0.924 0.951 0.029 0.757 0.81 0.029 0.859 0.883 0.03
Rand B Cost 0.845 0.842 0.026 0.918 0.945 0.029 0.735 0.781 0.029 0.843 0.871 0.03
Prop B Cost 0.856 0.832 0.026 0.896 0.913 0.029 0.711 0.751 0.029 0.835 0.864 0.029
Prop W Cost 0.908 0.902 0.026 0.916 0.936 0.029 0.768 0.817 0.029 0.869 0.89 0.029
Random Cost 0.721 0.68 0.03 0.894 0.91 0.028 0.78 0.835 0.028 0.675 0.641 0.03
Ada DT Full 0.965 0.967 0.02 0.989 0.977 0.009 0.888 0.605 0.019 0.934 0.916 0.026
Ada DT Small 0.945 0.948 0.001 0.989 0.977 0 0.89 0.622 0.001 0.917 0.893 0.001
Ada SGD Full 0.94 0.944 0.055 0.984 0.966 0.005 0.879 0.471 0.011 0.785 0.734 0.013
Ada SGD Small 0.909 0.916 0.01 0.984 0.966 0.005 0.864 0.432 0.011 0.784 0.732 0.012

Table 5: Accuracy, F1 Score and Training Cost for all delegation mechanisms using cost minimizing
parameters compared with each variety of Adaboost used. Bold values indicate when a delegating
ensemble outperforms at least one Adaboost method.
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