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Abstract

Voting is a central methodology for eliciting and
combining agents’ preferences and information
across many applications. Just as there are nu-
merous voting rules exhibiting different properties,
we also see many different voting systems. In this
paper we investigate how different voting systems
perform as a function of the characteristics of the
underlying voting population and social network.
In particular, we compare direct democracy, liquid
democracy, and sortition in a ground truth voting
context. Through simulations — using both real and
artificially generated social networks — we illus-
trate how voter competency distributions and levels
of direct participation affect group accuracy differ-
ently in each voting mechanism. Our results can
be used to guide the selection of a suitable voting
system based on the characteristics of a particular
voting setting.

1 Introduction

One person, one vote; is this the best way to run elections?
This paper explores whether new methods can lead to high
quality election outcomes while requiring less effort from
voters. Paradigms of voting such as liquid democracy and
sortition aim to apply modern understanding to centuries-old
social choice methods. Liquid democracy [Blum and Zuber,
2016] tries to make use of expert knowledge by allowing vot-
ers to transitively delegate their vote on issues they feel less
informed of or less interested in. Sortition [Dowlen, 2017]
involves selecting a subset of voters to participate in the elec-
tion to reduce the effort required of the total voter population
while maintaining desired properties such as fairness or rep-
resentation of subgroups [Flanigan et al., 2021]. In both sys-
tems only a subset of voters are fully active in the election,
in contrast to direct democracy where all voters participate
equally.

We examine these paradigms within a binary ground truth
setting. That is, voters are asked to choose between two op-
tions — one correct and one incorrect — and all wish to choose
the correct option. An election might be any question being
asked of a group where an objectively measurable truth ex-
ists, such as a trial where a jury is asked whether a defendant
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is innocent or guilty [Forsyth, 1852], or an investors meeting
where attendants are asked whether a stock will have a higher
or lower price 30 days in the future. In some cases, voters
may be unsure of, e.g., whether a stock price will rise, and
will prefer to rely on someone whose expertise they trust by
delegating their vote. In other cases, an organization selecting
participants in an election from a larger pool may know that
some voters bring more expertise than others and will try to
select such voters, as in jury selection.

These settings are examples of group decision-making. In
many such settings — particularly in rapidly growing online
communities — attention is a scarce resource. Communities
need to find methods of coping with the increased burden of
governance as they grow. Liquid democracy and sortition al-
low the community to balance the number of individuals mak-
ing participating with the attention the group is willing to put
towards governance.

Voters in the above example situations have their own
knowledge, understanding, and biases that affect the likeli-
hood that they will select the correct outcome. It is natural to
model this by viewing each participant as able to contribute
some noisy evaluation of the ground truth. Understanding the
dynamics that affect the accuracy of an entire group’s deci-
sion are key to both anyone running an election and anyone
participating in such an election.

Some papers in the literature have provided primarily the-
oretical results showing, e.g., the conditions under which
liquid democracy can reliably improve the decision-making
ability of a group [Kahng ef al., 2018], or that perfectly opti-
mizing delegations to maximize the ability of a group to iden-
tify ground truth is NP-Hard [Caragiannis and Micha, 2019].
Here we focus on understanding the practical factors affect-
ing the accuracy of the decision-making ability of a group
that employs either liquid democracy or sortition. To allow
for a more intuitive understanding, and due to the difficulty of
analytically analysing the situations we are interested in, we
focus our efforts on computer-based simulation results and
expand upon our previous work [Alouf-Heffetz et al., 2022].

The primary question we seek to answer is: What fac-
tors affect the quality of the group decision when using liquid
democracy or sortition? To answer this question, we explore
a model in which voters exist within a social network. In
modern times, the exponential increase in size and prevalence
of social networks allows us to consider the social structure



Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

as a given fact for many social choice settings. Additionally,
we use a single parameter that denotes the voters’ compe-
tency, which is their intrinsic probability of selecting the cor-
rect outcome. Within this model we compare the ability of
direct democracy, sortition, and liquid democracy to uncover
ground truth.

Our results demonstrate that achieving better accuracy than
direct democracy is achievable as long as there is some
method to approximate the relative competence of voters, in
which case, it is possible to run a highly accurate election
where only a fraction of voters must actively participate. Our
experiments found consistent results across both artificial and
real social networks. Furthermore, we show there is no clear
correlation between the properties of a social network and
group accuracy. Lastly, we find that a version of simulated
annealing for Liquid Democracy approaches the optimal dis-
tributions of delegations among voters. This was not easy to
foresee as finding optimal delegations is NP-Hard, therefore it
seems that the annealing algorithms rather quickly find states
that yield much higher accuracy than other forms of liquid
democracy.

The remainder of the paper is organized as follows. This
section finishes with a look at the related work while Sec-
tion 2 describes our model in greater depth. Section 3 intro-
duces our experimental design including the specific voting
rules we explore and the parameters we analyze. We describe
the experiments that we run and discuss their results in Sec-
tion 4. Section 5 concludes and briefly describes possible
future work.

1.1 Related Work

Voting systems. Forms of direct democracy and sorti-
tion [Sintomer, 2018] were originally practiced well over
2000 years ago in Athens [Tridimas, 2017]. Liquid democ-
racy is comparatively recent, having roots in Charles Dodg-
son’s work in the 19th century [Dodgson, 1884]. Most recent
works on these voting systems in the Al and computational
social choice communities has focused on worst case perfor-
mance scenarios or improving their fairness properties (see
[Caragiannis and Micha, 2019], [Escoffier er al., 2018], and
[Kahng et al., 2018]).

Liquid democracy. In recent years liquid democracy has
been adapted for use by several political parties. This has
been most well documented in the case of the LiquidFeed-
back software [Kling er al., 2015]; a recent overview is also
found in [Paulin, 2020]. Liquid democracy [Blum and Zuber,
2016] is usually studied for settings with a ground truth, in
which its worst-case performance is theoretically analyzed.
Kahng et al. [2018] have shown that, to guarantee a supe-
rior group accuracy from liquid democracy than from direct
democracy, voters must have access to non-local information.
Caragiannis and Micha [2019] have shown that finding op-
timal delegations is NP-Hard. These hardness results were
strengthened by Becker et al. [2021], who presented simula-
tions showing that, under particular settings, various delega-
tion methods are able to lead to a more accurate result than
direct democracy. They also apply an optimization process
to delegations to achieve a similar result as our simulated an-
nealing, albeit without exploration of the similarity of the re-
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sult to optimal weights. Bloembergen et al. [2019] have con-
sidered a game-theoretic model of liquid democracy where
each voter has a “type” and competency is construed as the
ability of a voter to identify and communicate their own type.

Sortition. Sortition is typically studied in a setting focused
on aspects other than decision accuracy. In particular, Be-
nade et al. [2019] have shown that sortition guarantees fair
representation of subsets of a population. Similarly, Flanigan
et al. [2021] developed several algorithms that select sorti-
tion participants to optimally balance between equal selection
probability for each voter and accurate representation of the
underlying population. We primarily focus on sortition as a
voting system that is easy to implement but, since it requires
only a subset of the voters to actively participate in the elec-
tion, minimizes the collective effort of voting.

Voter competence. Relatively little work has focused on
understanding the effects of voter competency distributions
on the outcome of elections. Grofman [1983] studied direct
democracy in a binary ground truth setting; several of their
theorems can be viewed as extensions of the Condorcet Jury
Theorem. Nitzan and Paroush [2017] summarize the long his-
tory of research into jury theorems.

2 Model

Competence networks. We consider a basic social choice
setting with n agents, V' = {vy,...,v,}, and two alternatives
A = {a™,a~}. Ourfocus is on a ground truth voting scenario
where a™ is the objectively correct outcome that the agents
collectively aim to elect. However, each voter v; € V has a
competency level ¢; € [0, 1] that corresponds to the probabil-
ity v; would vote “correctly” (i.e., would vote for a™).!

The agents are connected via an underlying social network,
thus we have a set of undirected edges E, representing the
connections between the agents. Combining the ingredients
of our setting, our basic mathematical object is a so-called
competence network, which is an undirected labeled graph
G = (V,E), where V = {v1,...,v,}, and each vertex v; €
V' acts as voter and is labeled with its competence value ¢;.
We thus use agents, voters, and vertices interchangeably.

Voting Systems. A voting system defines a process that op-
erates on a competence network and defines how the agent
groups make their joint binary decision. Formally speaking,
a voting system takes as input a competence network and out-
puts a winner, which is either the correct alternative a™ or the
incorrect alternative a~. As we always have exactly two al-
ternatives we use a weighted majority voting system. Each
voter that votes in an election commits their weight to a sin-
gle alternative and the alternative with the most weight is the
winner.

'Note that we do not require ¢; > 0.5. Caragiannis et al. [2019]
point out that ¢; — 0 might indicate a strongly held incorrect belief.
It is possible that a voter with ¢; < 0.5 prefers to delegate to a
voter with even lower competency, thus inducing an echo-chamber
dynamic. However, we agree with the view proposed by Becker er
al. [2021] that there exist objective indications of competency that
all voters recognize.
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Elections. An election is a competence network paired with
a voting system. When the election is run the voting system
is used on the competence network and results in a winning
alternative. We refer to the probability that ™ will be chosen
as the accuracy of the election.

3 Experimental Design

In this section we describe our experimental setup and the
details of each voting system we use. In particular, the steps
we follow in each experiment are as follows:

1. We create the underlying network that connects the
agents.

2. We assign competence levels to the voters in the net-
work.

3. We choose and use a voting system.

4. As our setting is probabilistic, we estimate the outcome
of the election.

3.1 Voting Systems

We consider several variants of sortition and liquid democ-
racy, as well as direct democracy, which we use as a bench-
mark. Note that in direct democracy all voters actively par-
ticipate in the election by voting. In contrast, in sortition and
liquid democracy only a subset of the voters actively vote.

Definition 1. An active voter is one whose choice of alterna-
tive is considered when computing the winner of the election.
The set of active voters is denoted 1V ¢ctive,

Direct democracy. In direct democracy, all voters actively
vote. That is, in direct democracy, every voter v; votes with
equal weight for either a™ or a~, where v; chooses a* with
probability equal to ¢;. The winning alternative is the one
that receives the most votes. Throughout the paper, ties are
broken in favour of a .

Sortition. In sortition, only a subset of the voters are active
and all those are given equal weight while all other voters do
not participate in the election at all and do not affect the out-
come. There are many variants of sortition, corresponding to
the method by which the set of active voters is selected. Here
we consider sortition as it might be used for a task such as
jury selection, where some individuals could be considered
more competent than others, rather than the sortition used in
citizen’s assemblies where the goal is to most accurately rep-
resent the underlying population. Sortition works best if the
set of active voters are exactly those voters who are the most
competent. As it may not be possible to accurately estimate
the competence levels of voters, we consider the following,
parameterized variant.

Definition 2. p-noisy sortition is a method of sortition in
which all voters are sorted in descending order of compe-
tence. Then, beginning from the most competent voter, in
each iteration i € [1, ..., n], with probability p € [0, 1], the i"
voter is swapped with one of the voters from the {i + 1, .., n},
chosen uniformly at random. Finally, the first £ voters are
selected as the set of active voters (and other voters are disre-
garded).
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Observe that, for p = 0, the p-noisy sortition variant is
equivalent to selecting the & most accurate voters (i.e., pure
meritocracy); while, for p = 1, it is equivalent to selecting k
voters uniformly at random (i.e., pure sortition).

Liquid democracy. In liquid democracy, like in sortition,
there is a set of active voters; however the other voters are not
disregarded. Each voter chooses whether to actively vote or
to delegate to another voter of their choice, and these delega-
tions are transitive (e.g. If v; delegates their vote to v then
v can vote with a weight of 2 or can instead delegate their
vote as well as v ’s vote to v3.). Each active voter has a set of
voters who delegate (either directly or transitively) to them.
In contrast to sortition, the voting weight of each active vot-
ers is not the same, but is equal to the number of delegations
they receive (either directly or transitively), plus one (for their
own vote).

In our simulations, each voter has an equal chance of being
chosen to be an active voter, based upon an experiment pa-
rameter. For the delegations of the nonactive voters, we use
the following variants:

* Liquid Better: For each nonactive voter v;, we se-
lect one of their neighbours uniformly at random,
among the neighbours with higher competence than v;.
That is, v; delegates to a random voter from the set
{7 € N& (i) la; > 4, (i,j) € E} where N§ (i)
{ieVI]j)eE, ¢ >q}h

* Liquid Max: For each nonactive voter v;, we select their
delegate to be their most competent neighbour.

In liquid democracy computing the delegations that result
in the highest probability of the resulting group decision be-
ing correct is NP-hard [Caragiannis and Micha, 2019]. For
this reason, we also consider a heuristic approach that takes a
competence network as input and aims to find the accuracy-
maximizing partition of voters into active/nonactive sets and
set of delegations for those nonactive voters. Our heuristic is
based on the popular local search heuristic of simulated an-
nealing (SA).

In our implementation of SA, we begin with either exist-
ing delegations (Experiments 1 and 2), or a state with no
delegations (Experiment 4), then make a single, randomly
chosen, local delegation change at each time step. If the
delegation leads to a higher group accuracy that state is ac-
cepted, otherwise the state is accepted probabilistically based
on the difference between accuracies of the old and new
states. If s; is the state after ¢ steps of annealing and Scyrrent
the current state, the probability of accepting a new state is
exp(—(Scurrent — $i)/T'). In all our experiments we hold T
constant at 1.0 and use the basinhopping function within the
SciPy library to implement simulated annealing [Virtanen et
al., 2020]. For a detailed overview of simulated annealing see
the overview in [Dowsland and Thompson, 2012] or [Wales
and others, 2003] for more detail on basin-hopping.

3.2 Network Generation

We use both real-world and artificially-generated networks.

Real-world networks. We have explored an array of real-
world networks from the SNAP database [Leskovec and
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Krevl, 2014] and included a real-world instance that is a sam-
pled network of Facebook users with 534 nodes and 9626
edges.

Artificial networks. We use the following two classical
probabilistic models for generating artificial networks, which
are often used to replicate properties of real-world social
networks (see, e.g., the overview of Kleinberg [2010]): (1)
Erdés—Rényi (ER): ER networks are parameterized by two
parameters—the number n of nodes and the connection prob-
ability p—and are generated by initializing an empty network
of n nodes and inserting each possible edge with the fixed
connection probability p, independently [Erdos et al., 19601,
and (2) Barabdsi—Albert (BA): BA networks are parameter-
ized by one parameter m and are generated via a preferential
attachment process where nodes are added one at a time and
connected to m of the existing nodes where the probability of
an existing node to be connected to the current node is pro-
portional to its degree [Albert and Barabdsi, 2002].

3.3 Competence Assignment

Given a network G = (V| E) generated via one of our net-
work generation processes, we use different probability dis-
tributions to assign competence levels to the voters V'
{v1,...,v,} in the network.

In particular, in our experiments we select some distribu-
tion D from which we draw voter competencies, so that for
each v; € V we sample a value ¢; ~ D. That is, the compe-
tence levels are chosen independently for each voter. In par-
ticular, we consider the following families of distributions:

¢ uniform distributions;

« truncated normal distributions;? and

« truncated exponential distributions.’

3.4 Accuracy Calculation

Recall that the accuracy of an election is the probability that
the correct alternative a™ will be selected. The accuracy of a
given election can be computed using dynamic programming
with a table of size O (n2) [Becker et al., 2021]. However,
our preliminary experiments with this algorithm found it ex-
pensive in memory and time (particularly with well connected
networks of several hundred nodes or more). Therefore in
our experiment we use an approximation algorithm, based
on Monte Carlo simulation [Mooney, 1997]. Concretely, we
proceed by performing 1000 iterations. In each iteration we
sample the votes of the voters using their competence val-
ues (so that a voter v; with competence value ¢; is voting for
a™ with probability ¢;), and then use the voting system with
these votes. Finally, we take the fraction of iterations result-
ing in a* winning as our estimate of the accuracy of the elec-
tion. This method proved to be computationally efficient and
highly accurate in estimating the accuracy of our elections.

>We use the SciPy implementation of the truncated normal dis-
tribution [Burkardt, 2014].

3Since the exponential distribution does not provide an upper
bound on sampled values whenever we sample a competency value
greater than 1 we map the value to 1. This leads to a mean value

—_— 8_>\

1
X X

slightly lower than the original distribution, i.e ' =
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4 Results and Discussion

Here we describe the specific experiments we have per-
formed. For each experiment, we describe its experimental
design, show its results, and discuss them. The goal of our ex-
periments is to identify the conditions under which each vot-
ing system is most useful. That is: are there particular compe-
tency distributions, network structures, or levels of voter par-
ticipation where any system give higher or lower accuracy?
Our simulation code is written in Python and run using
Python 3.8. We use Matplotlib [Hunter, 2007] to visualize
our data, and Scikit [Virtanen et al., 2020] for our statistical
analysis. In all our experiments we study voters with an aver-
age competency of 0.5 in order to demonstrate the ability of
liquid democracy and sortition to utilize expert knowledge.

4.1 Experiment 1: Fraction of Active Voters

In this experiment we concentrate on how the number of ac-
tive voters affects the accuracy of the group decision. We
consider networks of 100 and 1000 voters, all with an aver-
age degree of approximately 20. For BA networks, we set
m = 10 and in ER networks p = 0.20202 (p = 0.02002)
for networks of 100 (1000) voters. Voter competencies are
sampled as follows for each distribution:

(i) Uniform -Vi: g; ~ U (0.3,0.7)
(i) Gaussian - Vi :q; ~ N (0.5,0.1)
(iii) Exponential - Vi : ¢; ~ Exp(2)

We use p = 0.1 for our p-noisy sortition model and report
the average result of 10 trials.

In each individual plot of Figure 1, which shows the results
of this experiment, the X-axis shows the portion of active
voters used, ranging from 10% to 90%. The Y -axis shows
the resulting group accuracy.

Discussion. Whenever the fraction of active voters is low
(corresponding to the left side of the plots in Figure 1), the
possible variance of delegation is higher as there are more
nonactive voters. Interestingly, whenever more than half of
the voters delegate (i.e., when the fraction of active voters is
less than half) the accuracy achieved by Liquid Better is very
close to that of Liquid Max. This means that even though
Liquid Better only requires the nonactive voters to find a del-
egate who is more competent than themselves, it still is able
to elicit the “experts” of the network. Observe also that both
Liquid Better and Liquid Max achieve group accuracy levels
very close to that of the SA solution. Moreover, all methods
are significantly better than direct democracy. Lastly, note
that due to the asymmetry of exponential distribution the dif-
ferences described above are magnified. More than half of
the voters have a competence below 0.5 so direct democracy
approaches an accuracy of 0 when the number of voters in-
creases and the room for improvement from delegation or
sortition increases dramatically.

4.2 Experiment 2: Variance of Competencies

Here we consider the effect that the variance of voter com-
petence has on the group accuracy. In particular, we keep
the mean competency constant at 0.5 and slowly increase the



Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

ER 100 Voters ER 1000 Voters

BA 100 Voters

BA 1000 Voters Facebook 534 Voters

0.8 1
0.6 1

Uniform
Group Accuracy

‘/——v\/—\/\

\’\/“/\/\/\/\/

© o
= o N B

L

.

.

o
©
|

¢
\

Gaussian
Group Accuracy
o

N

o

=

e o o
> o ®
P
R
P

Group Accuracy
o
N
)

Exponential

AN ] 1

o

\\/\/\/\/\/\—\/\ | |

0 02 04 06 08 1 0O 02 04 06 08 1 0
Active Participation Active Participation

—— direct liquid better

02 04 06 08 1 0
Active Participation

—— liquid max

0.2 04 06 08 1
Active Participation

02 04 06 08 1 0
Active Participation

—— sortition —— annealing (max)

Figure 1: Results of Experiment 1 showing the decrease in accuracy (y-axis) as a higher fraction of voters become active participants (x-
axis). The relative accuracy of each voting method is constant between network size and type but accuracy changes between competency
distributions. When direct democracy is not visible it has an accuracy of approximately 0. Note that annealing results are only shown for 100

voters.

variance. The results of this experiment are shown in Fig-
ure 2. Note that, as the exponential distribution accepts only
a single parameter, that affects both the mean and the vari-
ance, in this experiment we consider only the uniform and
the Gaussian distributions. We consider 20 uniform distribu-
tions with upper and lower bounds evenly-spaced between
U(0.475,0.525) to U(0,1), and 20 Gaussian distributions
with o € {0.05,0.5}. We average all results over 10 trials.
In all cases 90% of voters are active.

Discussion. Figure 2 shows, particularly with more voters
present, that having even just 10% of voters delegating or
left out by sortition can lead to a dramatic increase in ac-
curacy. This suggests that indirect voting methods are very
well suited to situations where expert knowledge exists; as
the higher the competence variance is the higher the number
of voters with very high competency.

4.3 Experiment 3: Optimizing Delegations and
Active Voter Weight

Here we investigate the performance of simulated annealing
over time. In particular, we first run the heuristic and record
the accuracy it obtains as more iterations are being made.
We also complement our analysis by comparing the spe-
cific vote weights that result from using the heuristic to a the-
oretical result from the literature. In particular, Grofman et
al. [1983, Theorem XIII] consider weighted direct democ-
racy and show that in a binary ground-truth setting such as in
ours, in order to maximize the accuracy of direct democracy,
the weight of each voter v; with competence level ¢; shall be
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proportional to log(lz—iqi). We thus set to investigate whether
our SA heuristic find delegations that result in vote weights of
the active voters that are getting closer to the theoretical opti-
mum of Grofman et al. To this end, we proceed by examining
the set of active voters selected by SA, each 10 iterations of
SA, as follows:

(i) Calculate the normalized optimal weight
Liog( rL-)Vi € Veetive, Sort the results in descending

order and denote them by w°F?.

(i1) Define w* as the normalized actual weights of all active
voters induced by SA and sort them in descending order.

(iii) Finally, calculate the L2 distance between the two

. 2
weight vectors, L2 = \/Zievacme (wiP* — w¥)™.

?

The results of this experiment are shown in Figure 3

Discussion. By comparing to the optimal weights described
by Grofman et al., this experiment indicates how well anneal-
ing does at finding optimal delegations. When the L2 distance
from optimal weights is low the delegations are more closely
approximating the optimal weight distribution among active
voters. And, indeed, we do see in Figure 3 that the best so-
lution found by annealing approaches to the optimal weights
of Grofman ef al. [1983]. Interestingly, the figure also shows
that there are delegations found by annealing with high accu-
racy that are very dissimilar to the optimal weight distribu-
tion.
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Figure 2: Results of Experiment 2 showing the increase in accuracy from delegation and sortition when competency distributions have larger
variance. Note that annealing results are only shown for networks with 100 voters.
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Figure 3: Results of simulated annealing in Experiment 3. Annealing quickly reaches high accuracy while the L2 distance from the optimal

weight distribution shrinks.

4.4 Experiment 4: Sortition

To better understand the effect of different values of p in our
model of sortition we ran an experiment considering several
competency distributions over a wide range of p. These in-
cluded two Gaussian distributions with ¢ = 0.1 and 0.5, two
uniform distributions ranging from 0.4 — 0.6 and 0.1 — 0.9,
and an exponential distribution created as in previous exper-
iments. As in previous experiments, all distributions have a
mean competency of 0.5. We ran simulations with these val-
ues and examined the outcome of sortition when selecting
10%, 25%, and 50% of the voters to actively participate. Fig-
ure 4 presents the results of this experiment.

Discussion. In general, the results are approximately as ex-
pected: As p increases, the most competent voters are more
likely to be swapped for less competent voters and accuracy
decreases. Interestingly, different distributions respond dif-
ferently to changes in the fraction of active voters. For exam-
ple, when p is low, the low variance uniform distribution is
more accurate when 50% of voters are active than when 10%
are active. In contrast, as p increases, the exponential dis-
tribution loses accuracy more quickly with more active vot-
ers. These differences reflect the relative difference between
competent and incompetent voters in each distribution. An
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additional voter from the low variance uniform distribution
(which has a minimum competency of 0.4) can do much less
“harm” than an additional voter from the exponential distri-
bution (which has a minimum competency of 0).

4.5 Experiment 4: Network Properties

We now set to examine how different network properties af-
fect accuracy. To this end, we have fixed the competency dis-
tribution and the chance of active participation and ran elec-
tions on each network type. Then, we calculated the follow-
ing properties: mean degree, mean neighbour degree, connec-
tivity, clustering coefficient, radius, and diameter. Figure 5
show the comparison between the average degree of voters in
an ER network and group accuracy, using a Gaussian compe-
tency distribution with ;o = 0.5, ¢ = 0.2. We considered 99
ER networks with attachment parameters uniformly distribu-
tion between 0.1 and 0.99 and each data point represents the
mean of 30 elections. We also performed similar experiments
on BA networks; all experiments for each property found re-
sults similar to those in Figure 5.

Discussion. None of the network properties we considered
exhibited a strong relationship with group accuracy. We only
observed a very small drop in the accuracy of liquid democ-
racy in some extremely sparse networks. Of course, as with
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Figure 4: Results of an experiment varying the value of p in p-sortition. The three plots show group accuracy across three different levels of
voter participation for five competency distributions, each with a mean of 0.5.
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Figure 5: The accuracy of the Liquid Better delegation mechanism
on Erd6s—Rényi networks with a range of attachment parameters.
Group accuracy does not tend to change based on the average degree
of voters.

previous experiments, sampling from different competency
distributions on the same network affects the accuracy but
such variations appear unrelated to any network parameter
within the family of ER and BA networks we examined. We
believe we did not observe any relationship between network
properties and accuracy because only a bare minimum of con-
nectivity is required for delegation to be maximally effective.
This strongly suggests that any real social network structure
would not be a hindrance to the benefits of liquid democracy.

4.6 Summary

The overarching message from our experiments is that if voter
competency can be identified then direct democracy is un-
likely to be the most accurate decision-making mechanism.
When a coordinator is able to identify competency with high
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accuracy sortition is an excellent tool and liquid democracy
performs well even when voters are only able to recognize
another voter’s relative competence. Liquid democracy has
proven itself robust to variations in network structure as long
as the network is sufficiently connected and we have also seen
its ability to effectively utilize expert knowledge when a ma-
jority of voters have low competency..

5 Conclusion

We started this paper with the question “One person, one vote;
is this the best way to run an election?”. In the context studied
here we believe that our findings conclusively show that the
answer to this question is “No”. All of our results combine
to show that liquid democracy and sortition are both highly
effective tools for uncovering ground truth. Furthermore, we
believe that our experiments also serve to demonstrate that
these social choice paradigms are well suited for empirical
use across many settings.

Our work opens up many avenues for future research. Our
results were empirical and formalizing the relationship, for
example, of the trade-off between accuracy and the portion
of active voters could provide deeper insight into the prob-
lem. Furthermore, we assumed that voters with ¢; < 0.5 will
choose more competent delegates. However, in the face of
disinformation this may not be the case, and exploring the re-
sulting echo-chamber dynamics and methods for combating
such an issue may prove important.
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